SpectralNormalization Layer (for SNGAN)
Version 1.1.0 (2.09 KB) by
KaSyow Riyuu
spectral normalization layer input : layer , name
recommend using spectralNormalize
layers = [
imageInputLayer(inputSize)
convolution2dLayer(filterSize,fs,'Stride',s,'Padding','same','Name','conv1')
] ;
lg = layerGraph(layers);
net = dlnetwork(lg);
u = nan;
v = nan;
% in each iteration before foward(net,x)
[u,v,net] = spectralNormalize(u,v,net)
--------------------------------------------------------------------------------------------------------------------------------
input a conv2d layer or transposedconv2d layer and name for sn layer.
inputlayer need : filter size , num filters (output channel size), num channels(input channel size).
example :
SpectralNormalization(convolution2dLayer(filterSize,numFilters,"NumChannels", 3, 'Stride',2,'Padding','same','Name','conv1') , "sn1" )
SpectralNormalization( transposedConv2dLayer(filterSize, numFilters,"NumChannels", 64, 'Name','detc5',"Stride",2 ,'Cropping','same') , "sn19" )
or you can see how the SpectralNormalization work in code, then coding by self
Cite As
KaSyow Riyuu (2025). SpectralNormalization Layer (for SNGAN) (https://www.mathworks.com/matlabcentral/fileexchange/91740-spectralnormalization-layer-for-sngan), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Created with
R2021a
Compatible with R2021a
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.