Skip to content
MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
24:07 Video length is 24:07.
  • Description
  • Related Resources

System-level Simulation of an Aperture Array Beamformer

Kaushal Buch, Giant Metrewave Radio Telescope, NCRA-TIFR
Sreekar Sai Ranganathan, Indian Institute of Technology Madras

A multi-element, multi-beam aperture array beamforming system is being developed as part of the Expanded GMRT (eGMRT) project. This prototype system is a part of the proposal aimed at improving the scientific capabilities of the Giant Metrewave Radio Telescope (GMRT), one of the most sensitive instruments in the world for observing celestial objects at meter-wave radio frequencies. The initial prototype beamforming system built on an FPGA and operating in the L-band (1.1-1.7 GHz) is undergoing testing in a free-space test range at the GMRT site. In parallel with the efforts towards the final prototype development, we carried out an end-to-end simulation of the beamforming system by modeling the Vivaldi antenna array, RF and analog signal processing systems, and digital beamformer using MATLAB® and Simulink®. The free-space testing was simulated by modeling the transmitting antenna, propagation channel, and sources of interference for testing multiple beams. The simulation was carried out in Simulink using multiple toolboxes for the beamformer's accurate modeling, including the antenna array, test range, and array signal processing algorithms. We tested phased array beamsteering, nulling, and maxSNR beamforming algorithms/techniques for linear and rectangular arrays in the simulation and compared them with the experimental results. We kept the model parameters for the beamforming system simulator similar to those in the actual system. This enabled us to see the difference in the performance of actual and simulated systems. Optimal beamforming was simulated in a case with mutual coupling between the antenna elements to understand its effect on the array covariance matrix, signal-to-noise ratio, and the array calibration process. This presentation would describe the simulator architecture and various beamforming tests and compare the results with the actual system performance. The simulator has a workflow-based framework to encapsulate future requirements of the project and to support diverse array signal processing and beamforming applications.

See all proceedings from MATLAB EXPO 2022
View slides

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Feedback

Up Next:

23:32
Model-Based Design for DO-178C Software Development with...

Related Videos:

2:21
Forms-Based Report Generation Using Microsoft Word Templates
41:18
Automatic Report Generation in Model-Based Design
34:13
Model-Based Design for DO-178C Software Development with...
26:03
Automatic Code Generation of AUTOSAR Software Components...
MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • MATLAB Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Customer Stories
  • About MathWorks
  • Select a Web Site United States
  • Trust Center
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation