Skip to content
MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
2:14 Video length is 2:14.
  • Description
  • Full Transcript
  • Related Resources

What Is Statistics and Machine Learning Toolbox?

Statistics and Machine Learning Toolbox™ provides tools for accessing, preprocessing, and visualizing data; extracting features; training and optimizing models; and preparing models for deployment.

The typical workflow begins with accessing, cleaning, and preprocessing your data in preparation for extracting features. The toolbox supports all widely used classification, regression, and clustering algorithms, and it makes the challenging parts of model building easier with:

• Point-and-click apps for training and comparing models

• Automatic hyperparameter tuning and feature selection for optimizing model performance

• Scaling processing to big data and clusters using the same code

• Fast execution compared to popular open source tools

With MATLAB Coder™ you can automatically generate C/C++ code from machine learning models for use in embedded and high-performance applications.

The statistics and machine learning tool box provides tools for discovering patterns and selecting features, training classification or regression models with apps, and deploying to enterprise and embedded systems. In this example, a regression model predicts future loads in electric grids using multiple sources of data including timestamped historical electric load data and weather data. You can start exploring with descriptive statistics and visualizations including box plots to compare means and variances, dendrograms to reveal clustering and structure.

After preprocessing your data in MATLAB, you can identify which variables to select as features based on high correlations between predictors and response. Have principal component analysis identify transformed features that account for the majority of the data variability or use automated feature selection methods.

With the classification and regression Learner app you can interactively build predictive classification or regression models including nearest neighbor, decision trees, and shallow neural networks. Optimize hyperparameters, compare results from multiple models and cross-validation to a separate test data, and visualize performance with confusion matrices or ROC curves. Many of the toolbox algorithms work with out-of-memory data, without requiring any code changes. Once you've settled on a machine learning model you can deploy that model to IT systems using MATLAB compiler or generate standalone c-code that can be used on embedded devices with MATLAB Coder.

You can incrementally update linear models with new data and also update embedded models without regenerating the prediction code. The statistics and machine learning tool box offers a variety of statistical functions including hypothesis tests, ANOVA, and industrial statistics. To get started refer to an example, the information on the product page, or download a free trial below.

Related Products

  • Statistics and Machine Learning Toolbox

Learn More

Machine Learning with MATLAB
Introduction to Machine Learning (4 videos)

3 Ways to Speed Up Model Predictive Controllers

Read white paper

A Practical Guide to Deep Learning: From Data to Deployment

Read ebook

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Deep Learning and Traditional Machine Learning: Choosing the Right Approach

Read ebook

Hardware-in-the-Loop Testing for Power Electronics Control Design

Read white paper

Predictive Maintenance with MATLAB

Read ebook

Electric Vehicle Modeling and Simulation - Architecture to Deployment : Webinar Series

Register for Free

How much do you know about power conversion control?

Start quiz

Feedback

Featured Product

Statistics and Machine Learning Toolbox

  • Request Trial
  • Get Pricing

Up Next:

34:34
Machine Learning Made Easy

Related Videos:

5:36
Machine Learning for Predictive Modelling (Highlights)
44:37
Machine Learning for Predictive Modelling
41:25
Machine Learning with MATLAB
34:31
Machine Learning with MATLAB: Getting Started with...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • MATLAB Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Customer Stories
  • About MathWorks
  • Select a Web Site United States
  • Trust Center
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation