Note: This page has been translated by MathWorks. Click here to see

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

An *eigenvalue* and *eigenvector* of a square matrix *A* are, respectively, a scalar *λ* and a nonzero vector *υ* that satisfy

*Aυ* = *λυ*.

With the eigenvalues on the diagonal of a diagonal matrix Λ and the corresponding eigenvectors forming the columns of a matrix *V*, you have

*AV* = *VΛ*.

If *V* is nonsingular, this becomes the eigenvalue decomposition

*A* = *VΛV*^{–1}.

A good example is the coefficient matrix of this ordinary differential equation:

A = 0 -6 -1 6 2 -16 -5 20 -10

The statement

`lambda = ``eig`

(A)

produces a column vector containing the eigenvalues. For this matrix, the eigenvalues are complex:

lambda = -3.0710 -2.4645+17.6008i -2.4645-17.6008i

The real part of each of the eigenvalues is negative, so *e*^{λt} approaches zero as *t* increases. The nonzero imaginary part of two of the eigenvalues, ±*ω*, contributes the oscillatory component, sin(*ω**t*), to the solution of the differential equation.

With two output arguments, `eig`

computes the eigenvectors and stores the eigenvalues in a diagonal matrix:

[V,D] = eig(A) V = -0.8326 0.2003 - 0.1394i 0.2003 + 0.1394i -0.3553 -0.2110 - 0.6447i -0.2110 + 0.6447i -0.4248 -0.6930 -0.6930 D = -3.0710 0 0 0 -2.4645+17.6008i 0 0 0 -2.4645-17.6008i

The first eigenvector is real and the other two vectors are complex conjugates of each other. All three vectors are normalized to have Euclidean length, `norm(v,2)`

, equal to one.

The matrix` V*D*inv(V)`

, which can be written more succinctly as `V*D/V`

, is within round-off error of `A`

. And, `inv(V)*A*V`

, or `V\A*V`

, is within round-off error of` D`

.

Some matrices do not have an eigenvector decomposition. These matrices are not diagonalizable. For example:

A = [ 1 -2 1 0 1 4 0 0 3 ]

For this matrix

[V,D] = eig(A)

produces

V = 1.0000 1.0000 -0.5571 0 0.0000 0.7428 0 0 0.3714 D = 1 0 0 0 1 0 0 0 3

There is a double eigenvalue at *λ* = 1. The first and second columns of `V`

are the same. For this matrix, a full set of linearly independent eigenvectors does not exist.

Many advanced matrix computations do not require eigenvalue decompositions. They are based, instead, on the Schur decomposition

*A* =
*U**S**U* ′ ,

where *U* is an orthogonal matrix and *S* is a block
upper-triangular matrix with 1-by-1 and 2-by-2 blocks on the diagonal. The eigenvalues are
revealed by the diagonal elements and blocks of *S*, while the columns of
*U* provide an orthogonal basis, which has much better numerical properties
than a set of eigenvectors.

For example, compare the eigenvalue and Schur decompositions of this defective matrix:

A = [ 6 12 19 -9 -20 -33 4 9 15 ]; [V,D] = eig(A) V = -0.4741 + 0.0000i -0.4082 - 0.0000i -0.4082 + 0.0000i 0.8127 + 0.0000i 0.8165 + 0.0000i 0.8165 + 0.0000i -0.3386 + 0.0000i -0.4082 + 0.0000i -0.4082 - 0.0000i D = -1.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 - 0.0000i [U,S] = schur(A) U = -0.4741 0.6648 0.5774 0.8127 0.0782 0.5774 -0.3386 -0.7430 0.5774 S = -1.0000 20.7846 -44.6948 0 1.0000 -0.6096 0 0.0000 1.0000

The matrix `A`

is defective since it does not have a full set of linearly
independent eigenvectors (the second and third columns of `V`

are the same).
Since not all columns of `V`

are linearly independent, it has a large
condition number of about ~`1e8`

. However, `schur`

is able
to calculate three different basis vectors in `U`

. Since `U`

is orthogonal, `cond(U) = 1`

.

The matrix `S`

has the real eigenvalue as the first entry on the diagonal
and the repeated eigenvalue represented by the lower right 2-by-2 block. The eigenvalues of
the 2-by-2 block are also eigenvalues of `A`

:

eig(S(2:3,2:3)) ans = 1.0000 + 0.0000i 1.0000 - 0.0000i