# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

# erfc

Complementary error function

## Syntax

``erfc(x)``

## Description

example

````erfc(x)` returns the Complementary Error Function evaluated for each element of `x`. Use the `erfc` function to replace `1 - erf(x)` for greater accuracy when `erf(x)` is close to `1`.```

## Examples

collapse all

Find the complementary error function of a value.

`erfc(0.35)`
```ans = 0.6206 ```

Find the complementary error function of the elements of a vector.

```V = [-0.5 0 1 0.72]; erfc(V)```
```ans = 1.5205 1.0000 0.1573 0.3086 ```

Find the complementary error function of the elements of a matrix.

```M = [0.29 -0.11; 3.1 -2.9]; erfc(M)```
```ans = 0.6817 1.1236 0.0000 2.0000 ```

The bit error rate (BER) of binary phase-shift keying (BPSK), assuming additive white gaussian noise (AWGN), is

Plot the BER for BPSK for values of from `0dB` to `10dB`.

```EbN0_dB = 0:0.1:10; EbN0 = 10.^(EbN0_dB/10); BER = 1/2.*erfc(sqrt(EbN0)); semilogy(EbN0_dB,BER) grid on ylabel('BER') xlabel('E_b/N_0 (dB)') title('Bit Error Rate for Binary Phase-Shift Keying')```

You can use the complementary error function `erfc` in place of `1 - erf(x)` to avoid roundoff errors when `erf(x)` is close to `1`.

Show how to avoid roundoff errors by calculating `1 - erf(10)` using `erfc(10)`. The original calculation returns `0` while `erfc(10)` returns the correct result.

`1 - erf(10)`
```ans = 0 ```
`erfc(10)`
```ans = 2.0885e-45 ```

## Input Arguments

collapse all

Input, specified as a real number, or a vector, matrix, or multidimensional array of real numbers. `x` cannot be sparse.

Data Types: `single` | `double`

collapse all

### Complementary Error Function

The complementary error function of x is defined as

`$\begin{array}{c}\text{erfc}\left(x\right)=\frac{2}{\sqrt{\pi }}{\int }_{x}^{\infty }{e}^{-{t}^{2}}dt\\ =1-\text{erf}\left(x\right).\end{array}$`

It is related to the error function as

`$\text{erfc}\left(x\right)=1-\text{erf}\left(x\right).$`

## Tips

• You can also find the standard normal probability distribution using the Statistics and Machine Learning Toolbox™ function `normcdf`. The relationship between the error function `erfc` and `normcdf` is

`$\text{normcdf}\left(x\right)=\left(\frac{1}{2}\right)×\text{erfc}\left(\frac{-x}{\sqrt{2}}\right)$`

• For expressions of the form `1 - erfc(x)`, use the error function `erf` instead. This substitution maintains accuracy. When `erfc(x)` is close to `1`, then `1 - erfc(x)` is a small number and might be rounded down to `0`. Instead, replace `1 - erfc(x)` with `erf(x)`.

• For expressions of the form `exp(x^2)*erfc(x)`, use the scaled complementary error function `erfcx` instead. This substitution maintains accuracy by avoiding roundoff errors for large values of `x`.