Main Content

plot

Syntax

``plot(X,Y)``
``plot(X,Y,LineSpec)``
``plot(X1,Y1,...,Xn,Yn)``
``plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn)``
``plot(Y)``
``plot(Y,LineSpec)``
``plot(tbl,xvar,yvar)``
``plot(tbl,yvar)``
``plot(ax,___)``
``plot(___,Name,Value)``
``p = plot(___)``

Description

Vector and Matrix Data

example

````plot(X,Y)` creates a 2-D line plot of the data in `Y` versus the corresponding values in `X`. To plot a set of coordinates connected by line segments, specify `X` and `Y` as vectors of the same length.To plot multiple sets of coordinates on the same set of axes, specify at least one of `X` or `Y` as a matrix. ```
````plot(X,Y,LineSpec)` creates the plot using the specified line style, marker, and color.```

example

````plot(X1,Y1,...,Xn,Yn)` plots multiple pairs of x- and y-coordinates on the same set of axes. Use this syntax as an alternative to specifying coordinates as matrices.```

example

````plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn)` assigns specific line styles, markers, and colors to each x-y pair. You can specify `LineSpec` for some x-y pairs and omit it for others. For example, `plot(X1,Y1,"o",X2,Y2)` specifies markers for the first x-y pair but not for the second pair.```

example

````plot(Y)` plots `Y` against an implicit set of x-coordinates. If `Y` is a vector, the x-coordinates range from 1 to `length(Y)`.If `Y` is a matrix, the plot contains one line for each column in `Y`. The x-coordinates range from 1 to the number of rows in `Y`. If `Y` contains complex numbers, MATLAB® plots the imaginary part of `Y` versus the real part of `Y`. If you specify both `X` and `Y`, the imaginary part is ignored.```
````plot(Y,LineSpec)` plots `Y` using implicit x-coordinates, and specifies the line style, marker, and color.```

Table Data

````plot(tbl,xvar,yvar)` plots the variables `xvar` and `yvar` from the table `tbl`. To plot one data set, specify one variable for `xvar` and one variable for `yvar`. To plot multiple data sets, specify multiple variables for `xvar`, `yvar`, or both. If both arguments specify multiple variables, they must specify the same number of variables. (since R2022a)```

example

````plot(tbl,yvar)` plots the specified variable from the table against the row indices of the table. If the table is a timetable, the specified variable is plotted against the row times of the timetable. (since R2022a)```

Additional Options

example

````plot(ax,___)` displays the plot in the target axes. Specify the axes as the first argument in any of the previous syntaxes.```

example

````plot(___,Name,Value)` specifies `Line` properties using one or more name-value arguments. The properties apply to all the plotted lines. Specify the name-value arguments after all the arguments in any of the previous syntaxes. For a list of properties, see Line Properties.```

example

````p = plot(___)` returns a `Line` object or an array of `Line` objects. Use `p` to modify properties of the plot after creating it. For a list of properties, see Line Properties.```

Examples

collapse all

Create `x` as a vector of linearly spaced values between 0 and $2\pi$. Use an increment of $\pi /100$ between the values. Create `y` as sine values of `x`. Create a line plot of the data.

```x = 0:pi/100:2*pi; y = sin(x); plot(x,y)```

Define `x` as 100 linearly spaced values between $-2\pi$ and $2\pi$. Define `y1` and `y2` as sine and cosine values of `x`. Create a line plot of both sets of data.

```x = linspace(-2*pi,2*pi); y1 = sin(x); y2 = cos(x); figure plot(x,y1,x,y2)```

Define `Y` as the 4-by-4 matrix returned by the `magic` function.

`Y = magic(4)`
```Y = 4×4 16 2 3 13 5 11 10 8 9 7 6 12 4 14 15 1 ```

Create a 2-D line plot of `Y`. MATLAB® plots each matrix column as a separate line.

```figure plot(Y)```

Plot three sine curves with a small phase shift between each line. Use the default line style for the first line. Specify a dashed line style for the second line and a dotted line style for the third line.

```x = 0:pi/100:2*pi; y1 = sin(x); y2 = sin(x-0.25); y3 = sin(x-0.5); figure plot(x,y1,x,y2,'--',x,y3,':')```

MATLAB® cycles the line color through the default color order.

Plot three sine curves with a small phase shift between each line. Use a green line with no markers for the first sine curve. Use a blue dashed line with circle markers for the second sine curve. Use only cyan star markers for the third sine curve.

```x = 0:pi/10:2*pi; y1 = sin(x); y2 = sin(x-0.25); y3 = sin(x-0.5); figure plot(x,y1,'g',x,y2,'b--o',x,y3,'c*')```

Create a line plot and display markers at every fifth data point by specifying a marker symbol and setting the `MarkerIndices` property as a name-value pair.

```x = linspace(0,10); y = sin(x); plot(x,y,'-o','MarkerIndices',1:5:length(y))```

Create a line plot and use the `LineSpec` option to specify a dashed green line with square markers. Use `Name,Value` pairs to specify the line width, marker size, and marker colors. Set the marker edge color to blue and set the marker face color using an RGB color value.

```x = -pi:pi/10:pi; y = tan(sin(x)) - sin(tan(x)); figure plot(x,y,'--gs',... 'LineWidth',2,... 'MarkerSize',10,... 'MarkerEdgeColor','b',... 'MarkerFaceColor',[0.5,0.5,0.5])```

Use the `linspace` function to define `x` as a vector of 150 values between 0 and 10. Define `y` as cosine values of `x`.

```x = linspace(0,10,150); y = cos(5*x);```

Create a 2-D line plot of the cosine curve. Change the line color to a shade of blue-green using an RGB color value. Add a title and axis labels to the graph using the `title`, `xlabel`, and `ylabel` functions.

```figure plot(x,y,'Color',[0,0.7,0.9]) title('2-D Line Plot') xlabel('x') ylabel('cos(5x)')```

Define `t` as seven linearly spaced `duration` values between 0 and 3 minutes. Plot random data and specify the format of the `duration` tick marks using the `'DurationTickFormat'` name-value pair argument.

```t = 0:seconds(30):minutes(3); y = rand(1,7); plot(t,y,'DurationTickFormat','mm:ss')```

Since R2022a

A convenient way to plot data from a table is to pass the table to the `plot` function and specify the variables to plot.

Read `weather.csv` as a timetable `tbl`. Then display the first three rows of the table.

```tbl = readtimetable("weather.csv"); tbl = sortrows(tbl); head(tbl,3)```
``` Time WindDirection WindSpeed Humidity Temperature RainInchesPerMinute CumulativeRainfall PressureHg PowerLevel LightIntensity ____________________ _____________ _________ ________ ___________ ___________________ __________________ __________ __________ ______________ 25-Oct-2021 00:00:09 46 1 84 49.2 0 0 29.96 4.14 0 25-Oct-2021 00:01:09 45 1.6 84 49.2 0 0 29.96 4.139 0 25-Oct-2021 00:02:09 36 2.2 84 49.2 0 0 29.96 4.138 0 ```

Plot the row times on the x-axis and the `RainInchesPerMinute` variable on the y-axis. When you plot data from a timetable, the row times are plotted on the x-axis by default. Thus, you do not need to specify the `Time` variable. Return the `Line` object as `p`. Notice that the axis labels match the variable names.

`p = plot(tbl,"RainInchesPerMinute");`

To modify aspects of the line, set the `LineStyle`, `Color`, and `Marker` properties on the `Line` object. For example, change the line to a red dotted line with point markers.

```p.LineStyle = ":"; p.Color = "red"; p.Marker = ".";```

Since R2022a

Read `weather.csv` as a timetable `tbl`, and display the first few rows of the table.

```tbl = readtimetable("weather.csv"); head(tbl,3)```
``` Time WindDirection WindSpeed Humidity Temperature RainInchesPerMinute CumulativeRainfall PressureHg PowerLevel LightIntensity ____________________ _____________ _________ ________ ___________ ___________________ __________________ __________ __________ ______________ 25-Oct-2021 00:00:09 46 1 84 49.2 0 0 29.96 4.14 0 25-Oct-2021 00:01:09 45 1.6 84 49.2 0 0 29.96 4.139 0 25-Oct-2021 00:02:09 36 2.2 84 49.2 0 0 29.96 4.138 0 ```

Plot the row times on the x-axis and the `Temperature` and `PressureHg` variables on the y-axis. When you plot data from a timetable, the row times are plotted on the x-axis by default. Thus, you do not need to specify the `Time` variable.

Add a legend. Notice that the legend labels match the variable names.

```plot(tbl,["Temperature" "PressureHg"]) legend```

Starting in R2019b, you can display a tiling of plots using the `tiledlayout` and `nexttile` functions. Call the `tiledlayout` function to create a 2-by-1 tiled chart layout. Call the `nexttile` function to create an axes object and return the object as `ax1`. Create the top plot by passing `ax1` to the `plot` function. Add a title and y-axis label to the plot by passing the axes to the `title` and `ylabel` functions. Repeat the process to create the bottom plot.

```% Create data and 2-by-1 tiled chart layout x = linspace(0,3); y1 = sin(5*x); y2 = sin(15*x); tiledlayout(2,1) % Top plot ax1 = nexttile; plot(ax1,x,y1) title(ax1,'Top Plot') ylabel(ax1,'sin(5x)') % Bottom plot ax2 = nexttile; plot(ax2,x,y2) title(ax2,'Bottom Plot') ylabel(ax2,'sin(15x)')```

Define `x` as 100 linearly spaced values between $-2\pi$ and $2\pi$. Define `y1` and `y2` as sine and cosine values of `x`. Create a line plot of both sets of data and return the two chart lines in `p`.

```x = linspace(-2*pi,2*pi); y1 = sin(x); y2 = cos(x); p = plot(x,y1,x,y2);```

Change the line width of the first line to 2. Add star markers to the second line. Use dot notation to set properties.

```p(1).LineWidth = 2; p(2).Marker = '*';```

Plot a circle centered at the point (4,3) with a radius equal to 2. Use `axis equal` to use equal data units along each coordinate direction.

```r = 2; xc = 4; yc = 3; theta = linspace(0,2*pi); x = r*cos(theta) + xc; y = r*sin(theta) + yc; plot(x,y) axis equal```

Input Arguments

collapse all

x-coordinates, specified as a scalar, vector, or matrix. The size and shape of `X` depends on the shape of your data and the type of plot you want to create. This table describes the most common situations.

Type of PlotHow to Specify Coordinates
Single point

Specify `X` and `Y` as scalars and include a marker. For example:

`plot(1,2,"o")`

One set of points

Specify `X` and `Y` as any combination of row or column vectors of the same length. For example:

`plot([1 2 3],[4; 5; 6])`

Multiple sets of points
(using vectors)

Specify consecutive pairs of `X` and `Y` vectors. For example:

`plot([1 2 3],[4 5 6],[1 2 3],[7 8 9])`

Multiple sets of points
(using matrices)

If all the sets share the same x- or y-coordinates, specify the shared coordinates as a vector and the other coordinates as a matrix. The length of the vector must match one of the dimensions of the matrix. For example:

`plot([1 2 3],[4 5 6; 7 8 9])`
If the matrix is square, MATLAB plots one line for each column in the matrix.

Alternatively, specify `X` and `Y` as matrices of equal size. In this case, MATLAB plots each column of `Y` against the corresponding column of `X`. For example:

`plot([1 2 3; 4 5 6],[7 8 9; 10 11 12])`

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64` | `categorical` | `datetime` | `duration`

y-coordinates, specified as a scalar, vector, or matrix. The size and shape of `Y` depends on the shape of your data and the type of plot you want to create. This table describes the most common situations.

Type of PlotHow to Specify Coordinates
Single point

Specify `X` and `Y` as scalars and include a marker. For example:

`plot(1,2,"o")`

One set of points

Specify `X` and `Y` as any combination of row or column vectors of the same length. For example:

`plot([1 2 3],[4; 5; 6])`

Alternatively, specify just the y-coordinates. For example:

`plot([4 5 6])`

Multiple sets of points
(using vectors)

Specify consecutive pairs of `X` and `Y` vectors. For example:

`plot([1 2 3],[4 5 6],[1 2 3],[7 8 9])`

Multiple sets of points
(using matrices)

If all the sets share the same x- or y-coordinates, specify the shared coordinates as a vector and the other coordinates as a matrix. The length of the vector must match one of the dimensions of the matrix. For example:

`plot([1 2 3],[4 5 6; 7 8 9])`
If the matrix is square, MATLAB plots one line for each column in the matrix.

Alternatively, specify `X` and `Y` as matrices of equal size. In this case, MATLAB plots each column of `Y` against the corresponding column of `X`. For example:

`plot([1 2 3; 4 5 6],[7 8 9; 10 11 12])`

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64` | `categorical` | `datetime` | `duration`

Line style, marker, and color, specified as a string or character vector containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.

Example: `"--or"` is a red dashed line with circle markers

Line StyleDescriptionResulting Line
`"-"`Solid line

`"--"`Dashed line

`":"`Dotted line

`"-."`Dash-dotted line

MarkerDescriptionResulting Marker
`"o"`Circle

`"+"`Plus sign

`"*"`Asterisk

`"."`Point

`"x"`Cross

`"_"`Horizontal line

`"|"`Vertical line

`"square"`Square

`"diamond"`Diamond

`"^"`Upward-pointing triangle

`"v"`Downward-pointing triangle

`">"`Right-pointing triangle

`"<"`Left-pointing triangle

`"pentagram"`Pentagram

`"hexagram"`Hexagram

Color NameShort NameRGB TripletAppearance
`"red"``"r"``[1 0 0]`

`"green"``"g"``[0 1 0]`

`"blue"``"b"``[0 0 1]`

`"cyan"` `"c"``[0 1 1]`

`"magenta"``"m"``[1 0 1]`

`"yellow"``"y"``[1 1 0]`

`"black"``"k"``[0 0 0]`

`"white"``"w"``[1 1 1]`

Source table containing the data to plot, specified as a table or a timetable.

Table variables containing the x-coordinates, specified using one of the indexing schemes from the table.

Indexing SchemeExamples

Variable names:

• `"A"` or `'A'` — A variable called `A`

• `["A","B"]` or `{'A','B'}` — Two variables called `A` and `B`

• `"Var"+digitsPattern(1)` — Variables named `"Var"` followed by a single digit

Variable index:

• An index number that refers to the location of a variable in the table.

• A vector of numbers.

• A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing `0` or `false` values.

• `3` — The third variable from the table

• `[2 3]` — The second and third variables from the table

• `[false false true]` — The third variable

Variable type:

• `vartype("categorical")` — All the variables containing categorical values

The table variables you specify can contain numeric, categorical, datetime, or duration values. If `xvar` and `yvar` both specify multiple variables, the number of variables must be the same.

Example: `plot(tbl,["x1","x2"],"y")` specifies the table variables named `x1` and `x2` for the x-coordinates.

Example: `plot(tbl,2,"y")` specifies the second variable for the x-coordinates.

Example: `plot(tbl,vartype("numeric"),"y")` specifies all numeric variables for the x-coordinates.

Table variables containing the y-coordinates, specified using one of the indexing schemes from the table.

Indexing SchemeExamples

Variable names:

• `"A"` or `'A'` — A variable called `A`

• `["A","B"]` or `{'A','B'}` — Two variables called `A` and `B`

• `"Var"+digitsPattern(1)` — Variables named `"Var"` followed by a single digit

Variable index:

• An index number that refers to the location of a variable in the table.

• A vector of numbers.

• A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing `0` or `false` values.

• `3` — The third variable from the table

• `[2 3]` — The second and third variables from the table

• `[false false true]` — The third variable

Variable type:

• `vartype("categorical")` — All the variables containing categorical values

The table variables you specify can contain numeric, categorical, datetime, or duration values. If `xvar` and `yvar` both specify multiple variables, the number of variables must be the same.

Example: `plot(tbl,"x",["y1","y2"])` specifies the table variables named `y1` and `y2` for the y-coordinates.

Example: `plot(tbl,"x",2)` specifies the second variable for the y-coordinates.

Example: `plot(tbl,"x",vartype("numeric"))` specifies all numeric variables for the y-coordinates.

Target axes, specified as an `Axes` object, a `PolarAxes` object, or a `GeographicAxes` object. If you do not specify the axes, MATLAB plots into the current axes or it creates an `Axes` object if one does not exist.

To create a polar plot or geographic plot, specify `ax` as a `PolarAxes` or `GeographicAxes` object. Alternatively, call the `polarplot` or `geoplot` function.

Name-Value Arguments

Specify optional pairs of arguments as `Name1=Value1,...,NameN=ValueN`, where `Name` is the argument name and `Value` is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Example: `plot([0 1],[2 3],LineWidth=2)`

Before R2021a, use commas to separate each name and value, and enclose `Name` in quotes.

Example: `plot([0 1],[2 3],"LineWidth",2)`

Note

The properties listed here are only a subset. For a complete list, see Line Properties.

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range `[0,1]`, for example, ```[0.4 0.6 0.7]```.

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (`#`) followed by three or six hexadecimal digits, which can range from `0` to `F`. The values are not case sensitive. Therefore, the color codes `"#FF8800"`, `"#ff8800"`, `"#F80"`, and `"#f80"` are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
`"red"``"r"``[1 0 0]``"#FF0000"`

`"green"``"g"``[0 1 0]``"#00FF00"`

`"blue"``"b"``[0 0 1]``"#0000FF"`

`"cyan"` `"c"``[0 1 1]``"#00FFFF"`

`"magenta"``"m"``[1 0 1]``"#FF00FF"`

`"yellow"``"y"``[1 1 0]``"#FFFF00"`

`"black"``"k"``[0 0 0]``"#000000"`

`"white"``"w"``[1 1 1]``"#FFFFFF"`

`"none"`Not applicableNot applicableNot applicableNo color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB TripletHexadecimal Color CodeAppearance
`[0 0.4470 0.7410]``"#0072BD"`

`[0.8500 0.3250 0.0980]``"#D95319"`

`[0.9290 0.6940 0.1250]``"#EDB120"`

`[0.4940 0.1840 0.5560]``"#7E2F8E"`

`[0.4660 0.6740 0.1880]``"#77AC30"`

`[0.3010 0.7450 0.9330]``"#4DBEEE"`

`[0.6350 0.0780 0.1840]``"#A2142F"`

Example: `"blue"`

Example: ```[0 0 1]```

Example: `"#0000FF"`

Line style, specified as one of the options listed in this table.

Line StyleDescriptionResulting Line
`"-"`Solid line

`"--"`Dashed line

`":"`Dotted line

`"-."`Dash-dotted line

`"none"`No lineNo line

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the line has markers, then the line width also affects the marker edges.

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is less than the width of a pixel on your system, the line displays as one pixel wide.

Marker symbol, specified as one of the values listed in this table. By default, the object does not display markers. Specifying a marker symbol adds markers at each data point or vertex.

MarkerDescriptionResulting Marker
`"o"`Circle

`"+"`Plus sign

`"*"`Asterisk

`"."`Point

`"x"`Cross

`"_"`Horizontal line

`"|"`Vertical line

`"square"`Square

`"diamond"`Diamond

`"^"`Upward-pointing triangle

`"v"`Downward-pointing triangle

`">"`Right-pointing triangle

`"<"`Left-pointing triangle

`"pentagram"`Pentagram

`"hexagram"`Hexagram

`"none"`No markersNot applicable

Indices of data points at which to display markers, specified as a vector of positive integers. If you do not specify the indices, then MATLAB displays a marker at every data point.

Note

To see the markers, you must also specify a marker symbol.

Example: `plot(x,y,"-o","MarkerIndices",[1 5 10])` displays a circle marker at the first, fifth, and tenth data points.

Example: `plot(x,y,"-x","MarkerIndices",1:3:length(y))` displays a cross marker every three data points.

Example: `plot(x,y,"Marker","square","MarkerIndices",5)` displays one square marker at the fifth data point.

Marker outline color, specified as `"auto"`, an RGB triplet, a hexadecimal color code, a color name, or a short name. The default value of `"auto"` uses the same color as the `Color` property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range `[0,1]`, for example, ```[0.4 0.6 0.7]```.

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (`#`) followed by three or six hexadecimal digits, which can range from `0` to `F`. The values are not case sensitive. Therefore, the color codes `"#FF8800"`, `"#ff8800"`, `"#F80"`, and `"#f80"` are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
`"red"``"r"``[1 0 0]``"#FF0000"`

`"green"``"g"``[0 1 0]``"#00FF00"`

`"blue"``"b"``[0 0 1]``"#0000FF"`

`"cyan"` `"c"``[0 1 1]``"#00FFFF"`

`"magenta"``"m"``[1 0 1]``"#FF00FF"`

`"yellow"``"y"``[1 1 0]``"#FFFF00"`

`"black"``"k"``[0 0 0]``"#000000"`

`"white"``"w"``[1 1 1]``"#FFFFFF"`

`"none"`Not applicableNot applicableNot applicableNo color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB TripletHexadecimal Color CodeAppearance
`[0 0.4470 0.7410]``"#0072BD"`

`[0.8500 0.3250 0.0980]``"#D95319"`

`[0.9290 0.6940 0.1250]``"#EDB120"`

`[0.4940 0.1840 0.5560]``"#7E2F8E"`

`[0.4660 0.6740 0.1880]``"#77AC30"`

`[0.3010 0.7450 0.9330]``"#4DBEEE"`

`[0.6350 0.0780 0.1840]``"#A2142F"`

Marker fill color, specified as `"auto"`, an RGB triplet, a hexadecimal color code, a color name, or a short name. The `"auto"` option uses the same color as the `Color` property of the parent axes. If you specify `"auto"` and the axes plot box is invisible, the marker fill color is the color of the figure.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range `[0,1]`, for example, ```[0.4 0.6 0.7]```.

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (`#`) followed by three or six hexadecimal digits, which can range from `0` to `F`. The values are not case sensitive. Therefore, the color codes `"#FF8800"`, `"#ff8800"`, `"#F80"`, and `"#f80"` are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
`"red"``"r"``[1 0 0]``"#FF0000"`

`"green"``"g"``[0 1 0]``"#00FF00"`

`"blue"``"b"``[0 0 1]``"#0000FF"`

`"cyan"` `"c"``[0 1 1]``"#00FFFF"`

`"magenta"``"m"``[1 0 1]``"#FF00FF"`

`"yellow"``"y"``[1 1 0]``"#FFFF00"`

`"black"``"k"``[0 0 0]``"#000000"`

`"white"``"w"``[1 1 1]``"#FFFFFF"`

`"none"`Not applicableNot applicableNot applicableNo color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB TripletHexadecimal Color CodeAppearance
`[0 0.4470 0.7410]``"#0072BD"`

`[0.8500 0.3250 0.0980]``"#D95319"`

`[0.9290 0.6940 0.1250]``"#EDB120"`

`[0.4940 0.1840 0.5560]``"#7E2F8E"`

`[0.4660 0.6740 0.1880]``"#77AC30"`

`[0.3010 0.7450 0.9330]``"#4DBEEE"`

`[0.6350 0.0780 0.1840]``"#A2142F"`

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Format for `datetime` tick labels, specified as the comma-separated pair consisting of `"DatetimeTickFormat"` and a character vector or string containing a date format. Use the letters `A-Z` and `a-z` to construct a custom format. These letters correspond to the Unicode® Locale Data Markup Language (LDML) standard for dates. You can include non-ASCII letter characters such as a hyphen, space, or colon to separate the fields.

If you do not specify a value for `"DatetimeTickFormat"`, then `plot` automatically optimizes and updates the tick labels based on the axis limits.

Example: `"DatetimeTickFormat","eeee, MMMM d, yyyy HH:mm:ss"` displays a date and time such as ```Saturday, April 19, 2014 21:41:06```.

The following table shows several common display formats and examples of the formatted output for the date, Saturday, April 19, 2014 at 9:41:06 PM in New York City.

Value of `DatetimeTickFormat`Example
`"yyyy-MM-dd"``2014-04-19`
`"dd/MM/yyyy"``19/04/2014`
`"dd.MM.yyyy"``19.04.2014`
```"yyyy年 MM月 dd日"````2014年 04月 19日`
`"MMMM d, yyyy"``April 19, 2014`
`"eeee, MMMM d, yyyy HH:mm:ss"``Saturday, April 19, 2014 21:41:06`
`"MMMM d, yyyy HH:mm:ss Z"``April 19, 2014 21:41:06 -0400`

For a complete list of valid letter identifiers, see the `Format` property for datetime arrays.

`DatetimeTickFormat` is not a chart line property. You must set the tick format using the name-value pair argument when creating a plot. Alternatively, set the format using the `xtickformat` and `ytickformat` functions.

The `TickLabelFormat` property of the datetime ruler stores the format.

Format for `duration` tick labels, specified as the comma-separated pair consisting of `"DurationTickFormat"` and a character vector or string containing a duration format.

If you do not specify a value for `"DurationTickFormat"`, then `plot` automatically optimizes and updates the tick labels based on the axis limits.

To display a duration as a single number that includes a fractional part, for example, 1.234 hours, specify one of the values in this table.

Value of `DurationTickFormat` Description
`"y"`Number of exact fixed-length years. A fixed-length year is equal to 365.2425 days.
`"d"`Number of exact fixed-length days. A fixed-length day is equal to 24 hours.
`"h"`Number of hours
`"m"`Number of minutes
`"s"`Number of seconds

Example: `"DurationTickFormat","d"` displays duration values in terms of fixed-length days.

To display a duration in the form of a digital timer, specify one of these values.

• `"dd:hh:mm:ss"`

• `"hh:mm:ss"`

• `"mm:ss"`

• `"hh:mm"`

In addition, you can display up to nine fractional second digits by appending up to nine `S` characters.

Example: `"DurationTickFormat","hh:mm:ss.SSS"` displays the milliseconds of a duration value to three digits.

`DurationTickFormat` is not a chart line property. You must set the tick format using the name-value pair argument when creating a plot. Alternatively, set the format using the `xtickformat` and `ytickformat` functions.

The `TickLabelFormat` property of the duration ruler stores the format.

Tips

• Use `NaN` and `Inf` values to create breaks in the lines. For example, this code plots the first two elements, skips the third element, and draws another line using the last two elements:

`plot([1,2,NaN,4,5])`

• `plot` uses colors and line styles based on the `ColorOrder` and `LineStyleOrder` properties of the axes. `plot` cycles through the colors with the first line style. Then, it cycles through the colors again with each additional line style.

You can change the colors and the line styles after plotting by setting the `ColorOrder` or `LineStyleOrder` properties on the axes. You can also call the `colororder` function to change the color order for all the axes in the figure. (since R2019b)

Version History

Introduced before R2006a

expand all