# Average-Value Voltage Source Converter (Three-Phase)

Average-value bidirectional AC/DC voltage source converter

**Library:**Simscape / Electrical / Semiconductors & Converters / Converters

## Description

The Average-Value Voltage Source Converter (Three-Phase) block converts electrical energy from AC to DC voltage or from DC to AC voltage according to an input three-phase modulation wave. The corresponding input power is equal to the sum of the fixed power loss and the output power.

This block can work in both time and frequency-and-time simulation modes. If you set
the **AC frequency** parameter to `Variable`

,
this block works only in time simulation mode. If you select
`Constant`

, this block works in both time and
frequency-time simulation modes. For more information, see Frequency and Time Simulation Mode.

### Losses Parameterization

Switching losses, conduction losses, and quiescent losses are the main heat sources for a converter.

The switching losses are defined by this equation:

$${P}_{switching}={k}_{s}{v}_{dc}{I}_{rms}$$

where:

*k*is the proportionality constant that depends on the turn-on and turn-off intervals and switching frequency. Specify this value by setting the_{s}**Switching losses coefficient, ks**parameter.*v*is the dc-link voltage._{dc}$${I}_{rms}=\frac{\sqrt{{\left({i}_{a}-{i}_{dc}\right)}^{2}+{\left({i}_{b}-{i}_{dc}\right)}^{2}+{\left({i}_{c}-{i}_{dc}\right)}^{2}}}{\sqrt{3}}$$ is the root mean square (RMS) phase current, where $${i}_{dc}=\frac{{i}_{a}+{i}_{b}+{i}_{c}}{3}.$$

The conduction losses are defined by this equation:

$${P}_{conduction}={k}_{c1}{I}_{rms}+{k}_{c2}{I}_{rms}^{2}$$

where:

*k*is the coefficient of the conduction losses that depends on the on-state zero current collector-emitter voltage of the transistor and on the forward voltage drop of the diode. Specify this value by setting the_{c1}**Conduction losses coefficient, kc1**parameter.*k*is the coefficient of the conduction losses that depends on the state resistance of the transistor and on the anti-parallel diode. Specify this value by setting the_{c2}**Conduction losses coefficient, kc2**parameter.

The quiescent losses are defined by the **Fixed power loss**
parameter, *P _{fixed}*.

The sum of the switching, conduction, and quiescent losses define the total power losses of the converter:

$${P}_{loss}={P}_{switching}+{P}_{conduction}+{P}_{fixed}.$$

If not available, you can also obtain the
*k _{s}*,

*k*,

_{c1}*k*and

_{c2}*P*parameters values from the power losses profile, by setting the

_{fixed}**Losses parameterization**parameter to

`Profile: loss=f(Irms,vdc_nom)`

. The block
then solves this equation and calculates the values of the parameters:$$\left[\begin{array}{c}{P}_{1}\\ \vdots \\ {P}_{n}\end{array}\right]=\left[\begin{array}{cccc}1& {v}_{dc\_nom}{I}_{rms,1}& {I}_{rms,1}& {I}_{rms,1}^{2}\\ \vdots & \vdots & \vdots & \vdots \\ 1& {v}_{dc\_nom}{I}_{rms,n}& {I}_{rms,n}& {I}_{rms,n}^{2}\end{array}\right]\left[\begin{array}{c}{P}_{fixed}\\ {k}_{s}\\ {k}_{c1}\\ {k}_{c2}\end{array}\right]$$

where $$\left[\begin{array}{c}{P}_{1}\\ \vdots \\ {P}_{n}\end{array}\right]$$ is the vector of power loss values, **Converter
losses**, corresponding to the **RMS current for converter
losses** parameter, $$\left[\begin{array}{c}{I}_{rms,1}\\ \vdots \\ {I}_{rms,}{}_{n}\end{array}\right]$$, and the **Nominal dc-link voltage**,
*v _{dc_nom}*.

### Model Thermal Effects

This block has one optional thermal port. To expose the thermal port, set the **Modeling option** parameter to either:

`No thermal port`

— The block does not contain a thermal port.`Show thermal port`

— The block contains one thermal conserving port.

## Ports

### Input

### Conserving

## Parameters

## Model Examples

## References

[1] Rajput, M. N.
*Thermal modeling of permanent magnet synchronous motor and
inverter.* 2016.

## Extended Capabilities

## Version History

**Introduced in R2018a**