This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Getting Started with Reinforcement Learning Toolbox

Design and train policies using reinforcement learning

Reinforcement Learning Toolbox™ provides functions and blocks for training policies using reinforcement learning algorithms including DQN, A2C, and DDPG. You can use these policies to implement controllers and decision-making algorithms for complex systems such as robots and autonomous systems. You can implement the policies using deep neural networks, polynomials, or look-up tables.

The toolbox lets you train policies by enabling them to interact with environments represented by MATLAB® or Simulink® models. You can evaluate algorithms, experiment with hyperparameter settings, and monitor training progress. To improve training performance, you can run simulations in parallel on the cloud, computer clusters, and GPUs (with Parallel Computing Toolbox™ and MATLAB Parallel Server™).

Through the ONNX™ model format, existing policies can be imported from deep learning frameworks such as TensorFlow™ Keras and PyTorch (with Deep Learning Toolbox™). You can generate optimized C, C++, and CUDA code to deploy trained policies on microcontrollers and GPUs.

The toolbox includes reference examples for using reinforcement learning to design controllers for robotics and automated driving applications.


About Reinforcement Learning