Note: This page has been translated by MathWorks. Click here to see

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Coaxial transmission line

Use the `coaxial`

class to represent coaxial transmission
lines that are characterized by line dimensions, stub type, and
termination.

Use the `coaxial`

class to represent coaxial transmission lines that
are characterized by line dimensions, stub type, and termination.

A coaxial transmission line is shown in cross-section in the following figure. Its
physical characteristics include the radius of the inner conductor of the coaxial
transmission line *a*, and the radius of the outer conductor
*b*.

`h = rfckt.coaxial`

`h = rfckt.coaxial('Property1',value1,'Property2',value2,...)`

`h = rfckt.coaxial`

returns a coaxial transmission line
object whose properties are set to their default values.

`h = rfckt.coaxial('Property1',value1,'Property2',value2,...)`

returns a coaxial transmission line object, `h`

, with the
specified properties. Properties that you do not specify retain their
default values.

`analyze` | Analyze RFCKT object in frequency domain |

`calculate` | Calculate specified parameters for rfckt objects or rfdata objects |

`plotyy` | Plot specified parameters on X-Y plane with Y-axes on both left and right sides |

`getz0` | Get characteristic impedance of transmission line object |

`circle` | Draw circles on Smith Chart |

`listformat` | List valid formats for specified circuit object parameter |

`listparam` | List valid parameters for specified circuit object |

`loglog` | Plot specified circuit object parameters using log-log scale |

`plot` | Plot specified circuit object parameters on X-Y plane |

`polar` | Plot specified object parameters on polar coordinates |

`semilogx` | Plot specified circuit object parameters using log scale for x-axis |

`semilogy` | Plot specified circuit object parameters using log scale for y-axis |

`smith` | Plot specified circuit object parameters on Smith chart |

`write` | Write RF data from circuit or data object to file |

The `analyze`

method treats the transmission line as a 2-port linear
network. It computes the `AnalyzedResult`

property of a stub or as a
stubless line using the data stored in the `rfckt.coaxial`

object
properties as follows:

If you model the transmission line as a stubless line, the

`analyze`

method first calculates the ABCD-parameters at each frequency contained in the modeling frequencies vector. It then uses the`abcd2s`

function to convert the ABCD-parameters to S-parameters.The

`analyze`

method calculates the ABCD-parameters using the physical length of the transmission line,*d*, and the complex propagation constant,*k*, using the following equations:$$\begin{array}{l}A=\frac{{e}^{kd}+{e}^{-kd}}{2}\\ B=\frac{{Z}_{0}*\left({e}^{kd}-{e}^{-kd}\right)}{2}\\ C=\frac{{e}^{kd}-{e}^{-kd}}{2*{Z}_{0}}\\ D=\frac{{e}^{kd}+{e}^{-kd}}{2}\end{array}$$

*Z*_{0}and*k*are vectors whose elements correspond to the elements of*f*, the vector of frequencies specified in the`analyze`

input argument`freq`

. Both can be expressed in terms of the resistance (*R*), inductance (*L*), conductance (*G*), and capacitance (*C*) per unit length (meters) as follows:$$\begin{array}{c}{Z}_{0}=\sqrt{\frac{R+j2\pi fL}{G+j2\pi fC}}\\ k={k}_{r}+j{k}_{i}=\sqrt{(R+j2\pi fL)(G+j2\pi FC)}\end{array}$$

where

$$\begin{array}{c}R=\frac{1}{2\pi {\sigma}_{cond}{\delta}_{cond}}\left(\frac{1}{a}+\frac{1}{b}\right)\\ L=\frac{\mu}{2\pi}\mathrm{ln}\left(\frac{b}{a}\right)\\ G=\frac{2\pi \omega {\epsilon}^{\u2033}}{\mathrm{ln}\left(\frac{b}{a}\right)}\\ C=\frac{2\pi \epsilon}{\mathrm{ln}\left(\frac{b}{a}\right)}\end{array}$$

In these equations:

*a*is the radius of the inner conductor.*b*is the radius of the outer conductor.*σ*is the conductivity in the conductor._{cond}*μ*is the permeability of the dielectric.*ε*is the permittivity of the dielectric.*ε″*is the imaginary part of*ε*,*ε″*=*ε*_{0}*ε*tan_{r}*δ*, where:*ε*_{0}is the permittivity of free space.*ε*is the_{r}`EpsilonR`

property value.tan

*δ*is the`LossTangent`

property value.

*δ*is the skin depth of the conductor, which the method calculates as $$1/\sqrt{\pi f\mu {\sigma}_{cond}}$$._{cond}*f*is a vector of modeling frequencies determined by the Outport block.

If you model the transmission line as a shunt or series stub, the

`analyze`

method first calculates the ABCD-parameters at the specified frequencies. It then uses the`abcd2s`

function to convert the ABCD-parameters to S-parameters.When you set the

`StubMode`

property to`'Shunt'`

, the 2-port network consists of a stub transmission line that you can terminate with either a short circuit or an open circuit as shown in the following figure.*Z*is the input impedance of the shunt circuit. The ABCD-parameters for the shunt stub are calculated as:_{in}$$\begin{array}{c}A=1\\ B=0\\ C=1/{Z}_{in}\\ D=1\end{array}$$

When you set the

`StubMode`

property to`'Series'`

, the 2-port network consists of a series transmission line that you can terminate with either a short circuit or an open circuit as shown in the following figure.*Z*is the input impedance of the series circuit. The ABCD-parameters for the series stub are calculated as_{in}$$\begin{array}{c}A=1\\ B={Z}_{in}\\ C=0\\ D=1\end{array}$$

[1] Pozar, David M. *Microwave Engineering*, John Wiley &
Sons, Inc., 2005.

`rfckt.cpw`

| `rfckt.microstrip`

| `rfckt.parallelplate`

| `rfckt.rlcgline`

| `rfckt.txline`