idddtree
Inverse dual-tree and double-density 1-D wavelet transform
Syntax
Description
Examples
Perfect Reconstruction Using Dual-Tree Double-Density Wavelet Filter Bank
Demonstrate perfect reconstruction of a signal using a dual-tree double-density wavelet transform.
Load the noisy Doppler signal. Obtain the dual-tree double-density wavelet transform down to level 5. Invert the transform and demonstrate perfect reconstruction.
load noisdopp; wt = dddtree('cplxdddt',noisdopp,5,'FSdoubledualfilt',... 'doubledualfilt'); xrec = idddtree(wt); max(abs(noisdopp-xrec))
ans = 1.9291e-12
Input Arguments
wt
— Wavelet transform
structure
Wavelet transform, returned as a structure from dddtree
with these fields:
type
— Type of wavelet decomposition (filter bank)
'dwt'
| 'ddt'
| 'cplxdt'
| 'cplxdddt'
Type of wavelet decomposition (filter bank), specified as one
of 'dwt'
, 'ddt'
, 'cplxdt'
,
or 'cplxdddt'
. The type,'dwt'
,
gives a critically sampled discrete wavelet transform. The other types
are oversampled wavelet transforms. 'ddt'
is a
double-density wavelet transform, 'cplxdt'
is a
dual-tree complex wavelet transform, and 'cplxdddt'
is
a double-density dual-tree complex wavelet transform.
level
— Level of wavelet decomposition
positive integer
Level of wavelet decomposition, specified as a positive integer.
filters
— Decomposition (analysis) and reconstruction (synthesis) filters
structure
Decomposition (analysis) and reconstruction (synthesis) filters, specified as a structure with these fields:
Fdf
— First-stage analysis filters
matrix | cell array
First-stage analysis filters, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage analysis filters for the corresponding tree.
Df
— Analysis filters for levels > 1
matrix | cell array
Analysis filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the analysis filters for the corresponding tree.
Frf
— First-level reconstruction filters
matrix | cell array
First-level reconstruction filters, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage synthesis filters for the corresponding tree.
Rf
— Reconstruction filters for levels > 1
matrix | cell array
Reconstruction filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the synthesis filters for the corresponding tree.
cfs
— Wavelet transform coefficients
cell array of matrices
Wavelet transform coefficients, specified as a 1-by-(level
+1)
cell array of matrices. The size and structure of the matrix elements
of the cell array depend on the type of wavelet transform as follows:
'dwt'
—cfs{j}
j = 1,2,...
level
is the level.cfs{level+1}
are the lowpass, or scaling, coefficients.
'ddt'
—cfs{j}(:,:,k)
j = 1,2,...
level
is the level.k = 1,2 is the wavelet filter.
cfs{level+1}(:,:)
are the lowpass, or scaling, coefficients.
'cplxdt'
—cfs{j}(:,:,m)
j = 1,2,...
level
is the level.m = 1,2 are the real and imaginary parts.
cfs{level+1}(:,:)
are the lowpass, or scaling, coefficients.
'cplxdddt'
—cfs{j}(:,:,k,m)
j = 1,2
level
is the level.k = 1,2 is the wavelet filter.
m = 1,2 are the real and imaginary parts.
cfs{level+1}(:,:)
are the lowpass, or scaling, coefficients.
Output Arguments
xrec
— Synthesized 1-D signal
vector
Synthesized 1-D signal, returned as a vector. The row or column
orientation of xrec
depends on the row or column
orientation of the 1-D signal input to dddtree
.
Data Types: double
Version History
Introduced in R2013b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)