Euler Method Approximation Not Working

6 views (last 30 days)
Ali
Ali on 17 Dec 2021
Commented: Ali on 17 Dec 2021
Hello,
I am trying to plot a loglog error of the Euler IVP method. Everything works except for one issue. My approximation is always zero. I don't know why.
function error_euler
yfun = dsolve('Dy=t+y', 'y(0)=0', 't');
disp(['The IVP is Dy = t+y and the solution of IVP is ']);
disp(['y='])
disp(yfun);
f=@(t,y)t+y;
t0=0;
w0=0;
disp(['--------------------'])
disp([' Step Size Exact Solution Approximation Error'])
disp(['--------------------'])
for i=1:6
a(i)=0;
w1(i)=0;
h(i)=0;
t(i)=0;
end
for k=0:5
h(k+1)=h(k+1)+0.1*2^-k;
t=h(k+1);
a(k+1)=a(k+1)+eval(yfun);
w1(k+1)=w1(k+1)+h(k+1)*f(t0,w0);
end
for k=1:6
disp([h(k) a(k) w1(k) abs(a(k)-w1(k))])
end
loglog(h,abs(a-w1))
xlabel('h')
ylabel('Error')
grid on
title('Global Error Log-Log Plot')
end
You can see below that the approximation is zero. What am I doing wrong?
--------------------
Step Size Exact Solution Approximation Error
--------------------
0.100000000000000 0.005170918075648 0 0.005170918075648
0.050000000000000 0.001271096376024 0 0.001271096376024
0.025000000000000 0.000315120524429 0 0.000315120524429
0.012500000000000 0.000078451540634 0 0.000078451540634
0.006250000000000 0.000019572003762 0 0.000019572003762
0.003125000000000 0.000004887902739 0 0.000004887902739

Answers (1)

Voss
Voss on 17 Dec 2021
Take a look at how the approximation is calculated:
w1(k+1)=w1(k+1)+h(k+1)*f(t0,w0);
You are always evaluating f at t0,w0.

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!