Using Runge-Kutta algorithm to solve second order ODE
24 views (last 30 days)
Show older comments
For this task I need to create a program which manually uses the RK algorithm to solve a second order ODE. I'm trying to get my head around it but I think I'm going at it in the wrong way.
My original function is
with given values for m, F0 and w, so I have rearranged it to x'' = 50sin(8*pi*t)-x'-50x
I've then switched x' for y and rearranged to get 50sin(8*pi*t) = y' + y + 50x and this is what I'm using in the script. I need to plot x(t) and y(t) but at this point I'm just trying to find values for x and y over time.
The method I've used to get this far is below the code. Excuse my poor code. Thanks in advance.
PS I'm not allowed to use a function like ode45 to solve it for me.
close all; clear; clc;
t=0;x=0;y=0;
dy=myfunction(t,x,y)
x0=0;y0=0
h = 0.5;
for t=0:5.5
dx1 = h*y
dy1 = h*dy
dx2 = h*(y+(dy1/2))
dy2 = h*myfunction(t+(h/2),x+(dx1/2),y+(dy1/2))
dx3 = h*(y+(dy2/2))
dy3 = h*myfunction(t+(h/2),x+(dx2/2),y+(dy1/2))
dx4 = h*(y+dy3)
dy4 = h*myfunction(t+h,x+dx3,y+dy1)
deltax = (dx1+(2*dx2)+(2*dx3)+dx4)/6
deltay = (dy1+(2*dy2)+(2*dy3)+dy4)/6
xth = x+deltax
yth = y+deltay
x=xth
y=yth
t = t+h
end
function [dy] = myfunction(t,x,y)
dy=(50*sin(8*pi*t))-(50*x)-y;
end
Method used (I swapped v for y):

0 Comments
Answers (1)
Torsten
on 22 Apr 2022
Can you take it from here ?
%Solves y'' - (-exp(-B*t)-y+5*exp(-2*t)-2*exp(-(B+2)*t)+exp(-B*t)+t) = 0
% t in [0 1]
% y(0) = 1, y'(0) = -1
% B = 4
tstart = 0.0;
tend = 1.0;
h = (tend - tstart)/20;
T = (tstart:h:tend).';
Y0 = [1 -1];
B = 4;
f = @(t,y) [y(2) -exp(-B*t)-y(1)+5*exp(-2*t)-2*exp(-(B+2)*t)+exp(-B*t)+t];
Y = runge_kutta_RK4(f,T,Y0);
plot(T,Y)
function Y = runge_kutta_RK4(f,T,Y0)
N = numel(T);
n = numel(Y0);
Y = zeros(N,n);
Y(1,:) = Y0;
for i = 2:N
t = T(i-1);
y = Y(i-1,:);
h = T(i) - T(i-1);
k0 = f(t,y);
k1 = f(t+0.5*h,y+k0*0.5*h);
k2 = f(t+0.5*h,y+k1*0.5*h);
k3 = f(t+h,y+k2*h);
Y(i,:) = y + h/6*(k0+2*k1+2*k2+k3);
end
end
2 Comments
Torsten
on 22 Apr 2022
Edited: Torsten
on 22 Apr 2022
For your function,
f = @(t,y) [y(2) F0/m*sin(omega*t)-c/m*y(2)-k/m*y(1)]
where
y(1) = y, y(2) = y'.
So you shouldn't work with x and y, but with a vector y=(y(1),y(2)) to make everything easier.
Of course, omega, F0, m and k have to be given values before.
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!