[Edit: change the name of the initial matrix; it should not be Fcvc, it should be S. Add code to construct Fcvc using the
which we calculate.] You can just write a nested for loop (i,j) that does the
calculation: %Make a 4x4 covariance matrix
S=10*S
S =
10.0000 -7.0228 -1.6309 6.1487
-7.0228 10.0000 -7.4054 5.1093
-1.6309 -7.4054 10.0000 0.3682
6.1487 5.1093 0.3682 10.0000
That looks like a reasonable covariance matrix: it is positive along the diagonal, and the absolute value of off-diagonal element are less than the diagoonal, and it is symmetric.
Now compute
and
: sijbar=sijbar/((N^2-N)/2);
fprintf('siibar=%.4f, sijbar=%.4f\n',siibar,sijbar)
siibar=1.9459, sijbar=-0.7388
Those values look reasonable.
Use siibar and sijbar to make Fcvc
Fcvc=sijbar*(ones(N)-eye(N))+siibar*eye(N)
Fcvc =
1.9459 -0.7388 -0.7388 -0.7388
-0.7388 1.9459 -0.7388 -0.7388
-0.7388 -0.7388 1.9459 -0.7388
-0.7388 -0.7388 -0.7388 1.9459
That looks good.