You are now following this question
- You will see updates in your followed content feed.
- You may receive emails, depending on your communication preferences.
4-D Interpolation using interpn
2 views (last 30 days)
Show older comments
Hi,
I have 4 vectors as input and 1 vector as output. I want to do an interpolation following the instructions given here:
https://www.mathworks.com/help/matlab/ref/interpn.html --> Vq = interpn(X1,X2,X3,X4,V,Xq1,Xq2,Xq3,Xq4)
where Xq1, ..., Xq4 are scalars and equal to Xqi = Xi(1) (it is just a test).
However, I got the following error:
Interpolation requires at least two sample points for each grid dimension.
If I look at section 4-D Interpolation, it can be seen that 4D grids are constructed and after these points are passed through the function and a 4D structure is obtained for V.
In my case, I don't have a function. I just have a vector for the output V.
How I can make it work with my vector type of data?
13 Comments
mary
on 26 Nov 2022
Jan,
X1,X2,X3,X4 are 4 input vectors and V the corresponding output. Xq2,Xq3,Xq4 are the query points. In the link, it is written:
"Vq = interpn(X1,X2,...,Xn,V,Xq1,Xq2,...,Xqn) returns interpolated values of a function of n variables at specific query points using linear interpolation. The results always pass through the original sampling of the function. X1,X2,...,Xn contain the coordinates of the sample points. V contains the corresponding function values at each sample point. Xq1,Xq2,...,Xqn contain the coordinates of the query points."
For 1D application, they use: vq = interpn(x,v,xq,'cubic');
So, probably, we cannot apply it as Vq = interpn(X1,X2,X3,X4,V,Xq1,Xq2,Xq3,Xq4) for my case. That is why in the link, they use ngrid. But the problem is that in that link for a 4D interpolation there is a function f(x,y,z,t) that can give a value for any combination of x, y, z. In my case, I have an output vector for the specific values of 4 input vectors.
mary
on 26 Nov 2022
Ok, I see. So you mean that each time one parameter changes and the other 3 remain constants. Like the example given in that link and reported here, we see that in each row, X1 remains unchanged while X2 is changing.
[X1,X2] = ndgrid(-1:3,(1:4))
Otherwise, we cannot do the interpolation. Is it right?
Torsten
on 26 Nov 2022
Edited: Torsten
on 26 Nov 2022
Otherwise, we cannot do the interpolation. Is it right?
One can always interpolate somehow, but not with interpn.
Are your points (X1,X2,X3,X4) somehow regularly distributed in 4-dimensional space or wildly scattered ?
Maybe a fit for a, b, c and d with the equation
V = a*X1 + b*X2 + c*X3 + d*X4
can give satisfactory results.
Try "fun" as linear approximation function for V:
A = [X1,X2,X3,X4];
b = V;
sol = A\b;
fun = @(x1q,x2q,x3q,x4q) sol(1)*x1q+sol(2)*x2q+sol(3)*x3q+sol(4)*x4q
mary
on 26 Nov 2022
Edited: mary
on 26 Nov 2022
Thank you Torsten for your response. Actually the function that links X1, X2, X3 and X4 to V is highly non-linear. My objective is to build a look-up table that can be coupled to another program. So, if there is any best practice to make this lookup table, I will follow. So, this means that I can make my (X1,X2,X3,X4) regularly distributed. What are the best practice to follow? Make one parameter constant, and make 3 other change?
Torsten
on 27 Nov 2022
So you have a code to generate V from given values for X1,...,X4 ? And in order to save computing time, you want to build a look-up table instead of calling the function that calculates V from X1,...,X4 every time ?
Matt J
on 27 Nov 2022
Edited: Matt J
on 27 Nov 2022
X1,X2,X3,X4 are 4 input vectors and V the corresponding output. Xq2,Xq3,Xq4 are the query points.
I suggest attaching them in a .mat file, so that we can run the interpolation ourselves.
The error message is complaining that one of X1,X2,X3,X4 is a scalar, rather than a 597x1 vector, as you expect it to be.
Torsten
on 27 Nov 2022
Yes, that is what I want to do.
Then why don't you call your function V(X1,X2,X3,X4) over a full grid as required by "interpn", save the results in an array V(x1,x2,x3,x4) and then use this V-array for a table-lookup by "interpn" ?
Something like
for i = 1:597
for j = 1:597
for k = 1:597
for l = 1:597
V(i,j,k,l) = function_for_V(X1(i),X2(j),X3(k),X4(l));
end
end
end
end
Answers (0)
See Also
Categories
Find more on Interpolation in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!An Error Occurred
Unable to complete the action because of changes made to the page. Reload the page to see its updated state.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)