What are the results of something like (Notice the deliberate omission of semicolons)
[ I N ] = size(x)
[ O N ] = size(t)
MSE00 = mean(var(t',1))
minmaxxt = minmax([x;t])
figure(1)
plot(x,t)
hold on
net = fitnet(H);
[ net tr y e ] = train(net,x,t);
NMSE = mse(e)/MSE00
plot(x,y,'r.')
Next, use tr to obtain the indices for trn/val/tst and repeat for each subset i= trn,val,tst
figure
hold on
for i = 1:3
[ Ii Ni ] = size(xi)
[ Oi Ni ] = size(ti)
MSE00i = mean(var(ti',1))
minmaxxiti = minmax([xi;ti])
NMSEi = mse(ei)/MSE00i
plot(xi,ti)
plot(xi,yi,'r.')
end
The purpose of this is to make sure the data is stationary, i.e., the statistics of the 3 subsets are comparable
THEN, if any new data appears to come from the same source, it can be verified by comparing it with each of the three subsets.
Hope this helps.
Thank you for formally accepting my answer
Greg
0 Comments
Sign in to comment.