pdepe: why does spatial discretization fail?

3 views (last 30 days)
Hi,
when trying to solve a PDE very similar to the heat equation pdepe yields the following:
>> pdetest
Error using pdepe (line 293)
Spatial discretization has failed. Discretization supports only parabolic and elliptic equations, with flux term involving spatial derivative.
Error in pdetest (line 5)
sol = pdepe(0,@pde,@pdeic,@pdebc,xmesh,tspan);
What am I missing here? Please see the used code below:
function pdetest
xmesh = linspace(-4,3,82);
tspan = linspace(0,1,12);
sol = pdepe(0,@pde,@pdeic,@pdebc,xmesh,tspan);
function [c,f,s] = pde(x,t,u,DuDx)
c = 1;
f = 0.0968*DuDx;
s = 0;
function u0 = pdeic(x)
xmesh = linspace(-4,3,82);
[~, index] = min(abs(xmesh-x));
initial_values = [0.3639 0.3720 0.3801 0.3884 0.3968 ...
0.4054 0.4141 0.4229 0.4319 0.4411 0.4504 0.4599 0.4696 ...
0.4794 0.4894 0.4995 0.5098 0.5204 0.5310 0.5419 0.5530 ...
0.5642 0.5756 0.5873 0.5991 0.6111 0.6234 0.6358 0.6485 ...
0.6614 0.6745 0.6878 0.7014 0.7152 0.7292 0.7435 0.7580 ...
0.7727 0.7878 0.8030 0.8186 0.8344 0.8504 0.8668 0.8834 ...
0.9003 0.9175 0.9350 0.9528 0.9709 0.9893 1.0081 1.0271 ...
1.0465 1.0662 1.0863 1.1067 1.1274 1.1485 1.1700 1.1918 ...
1.2140 1.2366 1.2596 1.2829 1.3067 1.3309 1.3555 1.3805 ...
1.4059 1.4318 1.4581 1.4849 1.5121 1.5398 1.5680 1.5966 ...
1.6258 1.6554 1.6856 1.7163 1.7475];
u0 = initial_values(index);
function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,t)
pl = 0.3639;
ql = 0;
pr = 1.7475;
qr = 0;

Accepted Answer

Bill Greene
Bill Greene on 6 Apr 2015
I think you want the following in your pdebc function:
function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,t)
pl = ul-0.3639;
ql = 0;
pr = ur-1.7475;
qr = 0;

More Answers (0)

Tags

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!