Error in graph - Finite difference code

21 views (last 30 days)
Subha S
Subha S on 2 Oct 2023
Edited: Torsten on 12 Oct 2023
I'm a research scholar and I've started coding in MATLAB recently. I'm trying to solve a system of differential equations using finite difference method. The paper I'm working on is by Sharma et al. (I've given the link to the paper here Sharma et al. (2019)). In the paper, they have solved the finite difference equations using Thomas algorithm. But, I'm trying to solve the same finite difference equations without using Thomas algorithm. I've attached my code for your reference. There are no errors shown in the code. However, I'm unable to recreate the graphs given in the paper. May I know where I've gone wrong?
Nr=21; Nz=161; %number of values for radius r, z
R=1; L=16; %max values along each axis
dr=R/(Nr-1); dz=L/(Nz-1); %deltas
r=(0:Nr-1)*dr; z=(0:Nz-1)*dz; %vectors for r, z
u=zeros(Nr,Nz); w=zeros(Nr,Nz);
p=zeros(Nr,Nz); theta=zeros(Nr,Nz);
sigma=zeros(Nr,Nz); %allocate arrays
R=1; M=1; delta=0.6; epsilon=0.005; %constants
alpha=0; n=2; beta=1; Df=1; Sc=0.5; Sr=0.2; %constants
eta=(delta*(n^(n/(n-1))))/(n-1);
%alpha=a/b
h=(1+(epsilon*beta))*(1-eta*((beta-alpha)-(beta-alpha)^n));
%w(:,1)=w*ones(Nr,1); %w distribution at z=0
%w(1,:)=w*ones(1,Nz); %w distribution at r=0
for j=1:Nz-1
for i=2:h
u(i+1,j)=(1/dz*(r(i)))*(((u(i,j))*(r(i))*dz)-((u(i,j))*(dr)*(dz))+((w(i,j))*(r(i))*(dr))-((w(i,j+1))*(r(i))*(dr)));
%(u(i+1,j)-u(i,j))/(dr)+(u(i,j)/r(i,j))+(w(i,j+1)-w(i,j))/(dz)==0;
p(i+1,j)=p(i,j);
p(i,j+1)=p(i,j)+(dz/r(i))*((w(i+1,j)-w(i,j))/dr)+((dz)/(dr)^2)*(w(i+1,j)-2*w(i,j)+w(i-1,j))-(M^2)*dz*w(i,j);
((1+(4/3*R))*(((theta(i+1,j)-theta(i,j))/(dr*(r(i))))+((theta(i+1,j)-2*theta(i,j)+(theta(i-1,j)))/((dr)^2))))+(Df*(((sigma(i+1,j)-sigma(i,j))/(dr*(r(i))))+((sigma(i+1,j)-2*sigma(i,j)+sigma(i-1,j))/((dr)^2))))==0;
((1/Sc)*(((sigma(i+1,j)-sigma(i,j))/(dr*(r(i))))+((sigma(i+1,j)-2*sigma(i,j)+sigma(i-1,j))/((dr)^2))))+((Sr)*(((theta(i+1,j)-theta(i,j))/(dr*(r(i))))+((theta(i+1,j)-2*theta(i,j)+theta(i-1,j))/((dr)^2))))==0;
w(1,j)=w(2,j); theta(1,j)=theta(2,j); sigma(1,j)=sigma(2,j); %boundary condition at r=0
w(Nr,j)=0; theta(Nr,j)=0; sigma(Nr,j)=0; %boundary condition at r=R
%w(i,1)=0; theta(i,1)=0; sigma(i,1)=0;
%w(i,Nz)=0; theta(i,Nz)=0; sigma(i,Nz)=0;
end
end
%plot(r,[w(10,:);w(15,:);w(20,:)])
plot(r,theta)
  17 Comments
Subha S
Subha S on 12 Oct 2023
Thank you Sir for pointing out the error. I've changed the equations for theta and sigma. However, I'm not obtaining a smooth curve, there is a discontinuity that arises due to the problem itself. How to rectify the discontinuity? The same thing happens with w graph as well. Please suggest on how to proceed. I'm attaching my code for both w and theta, sigma.
R=1.5;
P_0=10;
k=1;
eps=1.0000e-06;
r=linspace(-R,R,1000);
solinit = bvpinit(linspace(-R,R,10),[0,0]);
options = bvpset('RelTol', 10e-4,'AbsTol',10e-7);
sol = bvp4c(@(r,y)soret(r,y,P_0),@soret_BC,solinit,options);
y=deval(sol,r);
plot(r,y(1,:))
function dydx = soret(r,y,P_0) % Details ODE to be solved
dydx = zeros(2,1);
dydx(1) = y(2);
dydx(2) = -(P_0)-((1/(r+eps))*y(2))+(y(1)) ; % This equation is invalid at r = 0, so taken as r+eps
end
function res = soret_BC(ya,yb) % Details boundary conditions
res=[ya(2);yb(1)];
end
The code for theta and sigma are given below
R=1.5;
Function definitions in a script must appear at the end of the file.
Move all statements after the "soret_BC" function definition to before the first local function definition.
Q=1;
D_f=1;
Sc=0.5;
Sr=0.2;
k=1;
eps=1.0000e-06;
r=linspace(-R,R,100);
solinit = bvpinit(linspace(-R,R,100),[0,0,1,1]);
options = bvpset('RelTol', 10e-4,'AbsTol',10e-7);
sol = bvp4c(@(r,y)soret(r,y),@soret_BC,solinit,options);
y=deval(sol,r);
plot(r,y(2,:))
function dydx = soret(r,y) % Details ODE to be solved
dydx = zeros(4,1);
dydx(1) = y(3); dydx(2)=y(4);
dydx(3) = -(y(3))/((r+eps));
dydx(4) = -(y(4))/((r+eps));
% This equation is invalid at r = 0
end
function res = soret_BC(ya,yb) % Details boundary conditions
res=[ya(3); ya(4); yb(1); yb(2)];
end
Torsten
Torsten on 12 Oct 2023
Edited: Torsten on 12 Oct 2023
R=1.5;
P_0=10;
k=1;
eps=1.0000e-04;
r=linspace(eps,R,1000);
solinit = bvpinit(r,[0,0]);
options = bvpset('RelTol', 10e-4,'AbsTol',10e-7);
sol = bvp4c(@(r,y)soret(r,y,P_0),@soret_BC,solinit,options);
y=deval(sol,r);
plot(r,y(1,:))
function dydx = soret(r,y,P_0) % Details ODE to be solved
dydx = zeros(2,1);
dydx(1) = y(2);
dydx(2) = -P_0 - 1/r * y(2) + y(1) ; % This equation is invalid at r = 0, so taken as r+eps
end
function res = soret_BC(ya,yb) % Details boundary conditions
res=[ya(2);yb(1)];
end
R=1.5;
Q=1;
D_f=1;
Sc=0.5;
Sr=0.2;
k=1;
eps=1.0000e-04;
r=linspace(eps,R,100);
solinit = bvpinit(r,[0,0,1,1]);
options = bvpset('RelTol', 1e-8,'AbsTol',1e-8);
sol = bvp4c(@(r,y)soret(r,y),@soret_BC,solinit,options);
y=deval(sol,r);
plot(r,y(2,:))
function dydx = soret(r,y) % Details ODE to be solved
dydx = zeros(4,1);
dydx(1) = y(3); dydx(2)=y(4);
dydx(3) = -y(3)/r;
dydx(4) = -y(4)/r;
% This equation is invalid at r = 0
end
function res = soret_BC(ya,yb) % Details boundary conditions
res=[ya(3); ya(4); yb(1); yb(2)];
end

Sign in to comment.

Answers (0)

Products


Release

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!