OCR on binary image
9 views (last 30 days)
Show older comments
Hello, I have an image and I've pre-processed it to be as clear as possible to get a binary image - for OCR.
However, the OCR function does not recognize any character - how can it be improved for my case?
This is what I am doing:
img_for_ocr = imread("img.png");
ocrResults = ocr(img_for_ocr(:,:,1));
figure, imshow(img_for_ocr(:,:,1))
fprintf("Recognized text: %s \t Detection confidence: %0.4f \n",cell2mat(ocrResults.Words),ocrResults.WordConfidences)
0 Comments
Answers (1)
Image Analyst
on 6 Oct 2023
Here's an improvement, though I don't have time to finish it now.
% Demo by Image Analyst
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 16;
markerSize = 20;
%--------------------------------------------------------------------------------------------------------
% READ IN TEST IMAGE
folder = [];
baseFileName = 'ocr1.png';
fullFileName = fullfile(folder, baseFileName);
% Check if file exists.
if ~exist(fullFileName, 'file')
% The file doesn't exist -- didn't find it there in that folder.
% Check the entire search path (other folders) for the file by stripping off the folder.
fullFileNameOnSearchPath = baseFileName; % No path this time.
if ~exist(fullFileNameOnSearchPath, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist in the search path folders.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
grayImage = imread(fullFileName);
% Get the dimensions of the image.
% numberOfColorChannels should be = 1 for a gray scale image, and 3 for an RGB color image.
[rows, columns, numberOfColorChannels] = size(grayImage)
if numberOfColorChannels > 1
% It's not really gray scale like we expected - it's color.
fprintf('It is not really gray scale like we expected - it is color\n');
% Extract the blue channel.
grayImage = grayImage(:, :, 3);
end
%--------------------------------------------------------------------------------------------------------
% Display the image.
subplot(2, 2, 1);
imshow(grayImage, []);
impixelinfo;
axis('on', 'image');
title('Original Gray Scale Image', 'FontSize', fontSize, 'Interpreter', 'None');
% Update the dimensions of the image.
% numberOfColorChannels should be = 1 for a gray scale image, and 3 for an RGB color image.
[rows, columns, numberOfColorChannels] = size(grayImage)
% Maximize window.
g = gcf;
g.WindowState = 'maximized';
g.Name = 'Demo by Image Analyst';
g.NumberTitle = 'off';
drawnow;
%--------------------------------------------------------------------------------------------------------
% Get mask by thresholding at 128.
lowThreshold = 128;
highThreshold = 255;
% Interactively and visually set a threshold on a gray scale image.
% https://www.mathworks.com/matlabcentral/fileexchange/29372-thresholding-an-image?s_tid=srchtitle
% [lowThreshold, highThreshold] = threshold(lowThreshold, highThreshold, grayImage)
mask = grayImage >= lowThreshold & grayImage <= highThreshold;
caption = sprintf('Histogram of Image. Threshold at %d', lowThreshold);
title(caption, 'FontSize', fontSize, 'Interpreter', 'None');
%--------------------------------------------------------------------------------------------------------
% Display initial mask.
subplot(2, 2, 2);
imshow(mask);
impixelinfo;
axis('on', 'image');
title('Initial Mask Image', 'FontSize', fontSize, 'Interpreter', 'None');
drawnow;
%--------------------------------------------------------------------------------------------------------
% Clean up the initial mask -- get rid of small interior holes in the image.
holeMask = imclearborder(~mask);
%--------------------------------------------------------------------------------------------------------
% Optional: find areas of blobs so we can filter out small ones.
props = regionprops(holeMask, 'Area');
allAreas = sort([props.Area])
% Get mask of just the small holes.
holeMask = bwareafilt(holeMask, [1, 600]);
%--------------------------------------------------------------------------------------------------------
% Display hole mask.
subplot(2, 2, 3);
imshow(holeMask);
impixelinfo;
axis('on', 'image');
title('Hole Mask Image', 'FontSize', fontSize, 'Interpreter', 'None');
drawnow;
% Fill in those holes in the original mask
mask(holeMask) = true;
% Get rid of blobs smaller than a letter.
% props = regionprops(mask, 'Area');
% allAreas = sort([props.Area])
mask = bwareaopen(mask, 1000);
%--------------------------------------------------------------------------------------------------------
% Display the final mask
subplot(2, 2, 4);
imshow(mask);
impixelinfo;
axis('on', 'image');
title('Final, Filled Mask Image', 'FontSize', fontSize, 'Interpreter', 'None');
txt = ocr(mask)
fprintf('The text is %s.\n', txt.Words{end})
3 Comments
Image Analyst
on 6 Oct 2023
Yeah, we know the OCR algorithm they use is not the best. A few years ago they put it on the list of functions that needed another looking at but I guess tehy haven't gotten around to it yet. Maybe you can try deep learning. Look for their MNIST demo where they're using a deep learning model to predict numbers and (possibly) alphabetic characters.
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!