Clear Filters
Clear Filters

I can`t solve out this problem, there is always Output argument "varargout{2}" (and possibly others) not assigned a value in the execution with "dlarray/dlgradient" function.

5 views (last 30 days)
function [netG, stateG, lossG] = modelGStep(netG, wrappedImage, realImage, stateG, learningRate, beta1, beta2)
% insure GPU dlarray
if ~isa(wrappedImage, 'dlarray')
wrappedImage = dlarray(gpuArray(wrappedImage), 'SSCB');
elseif ~strcmp(underlyingType(wrappedImage), 'gpuArray')
wrappedImage = dlarray(gpuArray(extractdata(wrappedImage)), 'SSCB');
end
if ~isa(realImage, 'dlarray')
realImage = dlarray(gpuArray(realImage), 'SSCB');
elseif ~strcmp(underlyingType(realImage), 'gpuArray')
realImage = dlarray(gpuArray(extractdata(realImage)), 'SSCB');
end
wrappedImage = dlarray(gpuArray(wrappedImage), 'SSCB');
realImage = dlarray(gpuArray(realImage), 'SSCB');
% insure dlfeval use dlgradient
[gradG, lossG] = dlfeval(@dlgradient, lossG, netG.Learnables);
fakeImage = predict(netG, wrappedImage);
lossG = mean((fakeImage - realImage).^2, 'all');
[gradG, lossG] = dlgradient(lossG, netG.Learnables);
[netG, stateG] = adamupdate(netG, gradG, stateG, learningRate, beta1, beta2);
return
end
  • this is my function.
  • below is my code
for epoch = 1:epochs
for i = 1:size(unwrapImages, 4)
realImage = unwrapImages(:,:,:,i);
wrappedImage = wrappedImages(:,:,:,i);
[netG, stateG, lossG] = modelGStep(netG, wrappedImage, realImage, stateG, learningRate, beta1, beta2);
[lossD, gradD] = modelDStep(netD, realImage, wrappedImage, netG);
[netD, stateD] = adamupdate(netD, gradD, stateD, learningRate, beta1, beta2);
gLosses(epoch) = gLosses(epoch) + double(gather(extractdata(lossG)));
dLosses(epoch) = dLosses(epoch) + double(gather(extractdata(lossD)));
end
gLosses(epoch) = gLosses(epoch) / size(unwrapImages, 4);
dLosses(epoch) = dLosses(epoch) / size(unwrapImages, 4);
fprintf('Epoch %d, Generator Loss: %.4f, Discriminator Loss: %.4f\n', ...
epoch, gLosses(epoch), dLosses(epoch));
end
what should i do to solve this,thanks!

Accepted Answer

Joss Knight
Joss Knight on 18 Apr 2024

Your mistake is dlfeval(@dlgradient,...). You need to put your code that computes the loss and the loss gradients into a function and then pass that to dlfeval.

More Answers (0)

Products


Release

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!