Based on the surf algorithm, I am stitching three images with overlapping regions.
4 views (last 30 days)
Show older comments
Based on the surf algorithm, I am stitching three images with overlapping regions. I have code that successfully stitches img1 and img2 into result1, and img2 and img3 into result2. However, when I attempt to stitch result1 and result2 together, issues arise. How should I proceed?
基于surf算法,拼接三张具有重叠区域的图像。我有拼接两张的代码,问题是三张图片img1,img2,img3,img1和img2有重叠区域,img2和img3有重叠区域。img1和img2拼接没有问题,结果是result1,img2和img3拼接没有问题,结果是result2,但将result1和result2拼接时却出现了问题,我该怎么办
0 Comments
Answers (1)
Garmit Pant
on 12 Jul 2024
Hello yanxin
From what I gather, you are trying to stitch three images together using feature-based image registration and are not getting an appropriate output.
Kindly refer to the following MATLAB Example on creating panoramas using feature-based stitching:
Please use the exact workflow and code to stitch together your three images. The code snippet below uses the workflow in the example to stitch together your three images.
imageFolder = fullfile(pwd); % Assuming images are in the current directory
imageFiles = {'b1.png', 'b2.png', 'b3.png'};
imds = imageDatastore(fullfile(imageFolder, imageFiles));
% Read the first image from the image set.
I = readimage(imds,1);
% Initialize features for I(1)
grayImage = im2gray(I);
points = detectSURFFeatures(grayImage);
[features, points] = extractFeatures(grayImage,points);
% Initialize all the transformations to the identity matrix. Note that the
% projective transformation is used here because the building images are fairly
% close to the camera. For scenes captured from a further distance, you can use
% affine transformations.
numImages = numel(imds.Files);
tforms(numImages) = projtform2d;
% Initialize variable to hold image sizes.
imageSize = zeros(numImages,2);
% Iterate over remaining image pairs
for n = 2:numImages
% Store points and features for I(n-1).
pointsPrevious = points;
featuresPrevious = features;
% Read I(n).
I = readimage(imds, n);
% Convert image to grayscale.
grayImage = im2gray(I);
% Save image size.
imageSize(n,:) = size(grayImage);
% Detect and extract SURF features for I(n).
points = detectSURFFeatures(grayImage);
[features, points] = extractFeatures(grayImage, points);
% Find correspondences between I(n) and I(n-1).
indexPairs = matchFeatures(features, featuresPrevious, 'Unique', true);
matchedPoints = points(indexPairs(:,1), :);
matchedPointsPrev = pointsPrevious(indexPairs(:,2), :);
% Estimate the transformation between I(n) and I(n-1).
tforms(n) = estgeotform2d(matchedPoints, matchedPointsPrev,...
'projective', 'Confidence', 99.9, 'MaxNumTrials', 2000);
% Compute T(1) * T(2) * ... * T(n-1) * T(n).
tforms(n).A = tforms(n-1).A * tforms(n).A;
end
% Compute the output limits for each transformation.
for i = 1:numel(tforms)
[xlim(i,:), ylim(i,:)] = outputLimits(tforms(i), [1 imageSize(i,2)], [1 imageSize(i,1)]);
end
avgXLim = mean(xlim, 2);
[~,idx] = sort(avgXLim);
centerIdx = floor((numel(tforms)+1)/2);
centerImageIdx = idx(centerIdx);
Tinv = invert(tforms(centerImageIdx));
for i = 1:numel(tforms)
tforms(i).A = Tinv.A * tforms(i).A;
end
for i = 1:numel(tforms)
[xlim(i,:), ylim(i,:)] = outputLimits(tforms(i), [1 imageSize(i,2)], [1 imageSize(i,1)]);
end
maxImageSize = max(imageSize);
% Find the minimum and maximum output limits.
xMin = min([1; xlim(:)]);
xMax = max([maxImageSize(2); xlim(:)]);
yMin = min([1; ylim(:)]);
yMax = max([maxImageSize(1); ylim(:)]);
% Width and height of panorama.
width = round(xMax - xMin);
height = round(yMax - yMin);
% Initialize the "empty" panorama.
panorama = zeros([height width 3], 'like', I);
blender = vision.AlphaBlender('Operation', 'Binary mask', ...
'MaskSource', 'Input port');
% Create a 2-D spatial reference object defining the size of the panorama.
xLimits = [xMin xMax];
yLimits = [yMin yMax];
panoramaView = imref2d([height width], xLimits, yLimits);
% Create the panorama.
for i = 1:numImages
I = readimage(imds, i);
% Transform I into the panorama.
warpedImage = imwarp(I, tforms(i), 'OutputView', panoramaView);
% Generate a binary mask.
mask = imwarp(true(size(I,1),size(I,2)), tforms(i), 'OutputView', panoramaView);
% Overlay the warpedImage onto the panorama.
panorama = step(blender, panorama, warpedImage, mask);
end
figure
imshow(panorama)
I hope you find the above explanation and suggestions useful!
0 Comments
See Also
Categories
Find more on Feature Detection and Extraction in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!