Forward Euler solution improvement
41 views (last 30 days)
Show older comments
Cesar
on 6 Feb 2026 at 1:46
Edited: Alan Stevens
about 17 hours ago
I would like to know if this code can be improved or is well-written as it is? it does not give errors. I'll appreciate any comments.Thanks
%part a
clear; clc;
% Parameters
alpha = 10;
beta_values = [2, 4];
h = 0.01;
t = 0:h:20;
N = length(t);
% Initial conditions
y1_0 = 0;
y2_0 = 2;
for b = 1:length(beta_values)
beta = beta_values(b);
y1 = zeros(1, N);
y2 = zeros(1, N);
% Initial values
y1(1) = y1_0;
y2(1) = y2_0;
% Forward Euler method
for n = 1:N-1
f1 = alpha ...
- y1(n) ...
- (4*y1(n)*y2(n)) / (1 + y1(n)^2);
f2 = beta * y1(n) * ...
(1 - y2(n) / (1 + y1(n)^2));
y1(n+1) = y1(n) + h * f1;
y2(n+1) = y2(n) + h * f2;
end
figure;
plot(t, y1, 'LineWidth', 1.5);
xlabel('t');
ylabel('y_1(t)');
title(['Forward Euler: y_1 vs t, \beta = ', num2str(beta)]);
grid on;
figure;
plot(y1, y2, 'LineWidth', 1.5);
xlabel('y_1');
ylabel('y_2');
title(['Phase Portrait: y_2 vs y_1, \beta = ', num2str(beta)]);
grid on;
end
%part b
% Parameters
alpha = 10;
beta_values = [3.4, 3.5, 3.6];
h = 0.01;
t = 0:h:100;
N = length(t);
% Initial conditions
y1_0 = 0;
y2_0 = 2;
for b = 1:length(beta_values)
beta = beta_values(b);
y1 = zeros(1, N);
y2 = zeros(1, N);
% Initial values
y1(1) = y1_0;
y2(1) = y2_0;
% Forward Euler method
for n = 1:N-1
f1 = alpha ...
- y1(n) ...
- (4*y1(n)*y2(n)) / (1 + y1(n)^2);
f2 = beta * y1(n) * ...
(1 - y2(n) / (1 + y1(n)^2));
y1(n+1) = y1(n) + h * f1;
y2(n+1) = y2(n) + h * f2;
end
figure;
plot(t, y1, 'LineWidth', 1.5);
xlabel('t');
ylabel('y_1(t)');
title(['y_1 vs t, \beta = ', num2str(beta)]);
grid on;
figure;
plot(y1, y2, 'LineWidth', 1.5);
xlabel('y_1');
ylabel('y_2');
title(['Phase Portrait y_2 vs y_1, \beta = ', num2str(beta)]);
grid on;
end
0 Comments
Accepted Answer
Alan Stevens
on 6 Feb 2026 at 11:38
It's clear and runs quickly. However, it's probably neater to pre-define your gradient functions like this:
% Gradient functions
f1 = @(alpha,y1,y2) alpha - y1 - (4*y1*y2) / (1 + y1^2);
f2 = @(beta,y1,y2) beta * y1 * (1 - y2 / (1 + y1^2));
and then replace the forward Euler equations simply by:
% Forward Euler method
for n = 1:N-1
y1(n+1) = y1(n) + h * f1(alpha,y1(n),y2(n));
y2(n+1) = y2(n) + h * f2(beta,y1(n),y2(n));
end
4 Comments
Alan Stevens
34 minutes ago
Edited: Alan Stevens
24 minutes ago
Your code posted at 19:56 above only puts titles, labels etc on the last plot (as the circles are all the same size, you only see the blue one). Also the set gcf command confuses the axis equal command. You could do the following:
T_final = 10;
u0 = [1; 0];
N_steps = [10000, 30000, 50000];
colors = ['r', 'g', 'b'];
for i = 1:length(N_steps)
N = N_steps(i);
h = T_final / N;
t = 0:h:T_final;
u = zeros(2, length(t));
u(:, 1) = u0;
% Forward Euler
for n = 1:N
f = [u(2, n); -u(1, n)]; % du1/dt = u2 du2/dt = -u1
u(:, n+1) = u(:, n) + h * f;
end
%figure - if you want three separate figures
subplot(2,2,i) % - if you want all tyhree on one figure
plot(u(1, :), u(2, :), 'Color', colors(i), 'LineWidth', 1, ...
'DisplayName', ['N = ' num2str(N)]);
xlabel('u_1');
ylabel('u_2');
title('u_2 vs u_1 (Forward Euler)');
%set(gcf, 'Position', [100, 100, 00, 500])
legend('show');
grid on;
axis equal;
end
Alan Stevens
26 minutes ago
Your ode45 is correctly implemented. (The fourth value of y0 seems to be unneccesarily precise! However, I didn't test the sensitivity of the results to reducing the number of decimal places.)
More Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!









