adding two different distributions example:Gaussian and Poisson distribution

7 views (last 30 days)
if we add two different distributions namely gaussian which as mean and standard deviation as variables and Poisson distribution with lambda variable how to mathematically relate the resultant distribution(What distribution the resulting value will take) and how to code it
  1 Comment
Image Analyst
Image Analyst on 8 Jun 2016
What does "relate" mean to you? The new distribution will be the sum of the two you summed. What else do you need to know?

Sign in to comment.

Answers (1)

Torsten
Torsten on 6 Jun 2016
Edited: Torsten on 6 Jun 2016
If X ~ Poisson(lambda), Y ~ N(mu,sigma^2), X, Y independent and Z=X+Y, then the cdf of Z is given by
P(Z<=z) = sum_{k=0}^{k=oo} P(X=k) * P(Y<=z-k).
P(X=k) = lambda^k/k! * exp(-lambda)
P(Y<=z-k) = 0.5*(1+erf((z-k-mu)/sqrt(2*sigma^2))) (erf: error function)
If needed, you can get the pdf of Z by differentiating the sum with respect to z.
Best wishes
Torsten.
  3 Comments
Torsten
Torsten on 8 Jun 2016
So to get the cfd F_Z of Z=X+Y, you have to evaluate the infinite sum
F_Z(z)= sum_{k=0}^{k=Inf} lambda^k/k!*exp(-lambda)*0.5*(1+erf((z-k-mu)/sqrt(2*sigma^2)))
for different values of z.
Make an attempt. If it does not work, post the code with the error message you get.
Best wishes
Torsten.

Sign in to comment.

Tags

No tags entered yet.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!