re-train a pre-trained autoencoder
15 views (last 30 days)
Show older comments
Hello, I want to retrain an autoencoder with a different set of images. autoencoder classe seems to not allowed this, so i transform my autoencoder into a classical neural network (with network function). but now i need to encode my data to train the next layer. How can i do that?
0 Comments
Answers (1)
Grzegorz Knor
on 17 Jul 2017
Edited: Grzegorz Knor
on 18 Jul 2017
To encode data from retrained network you need to create new network, which contains only encoder layer. Please see the code (it is based on TrainSparseAutoencoderExample):
% load dataset
X = abalone_dataset;
% split it into two parts
X1 = X(:,1:2085);
X2 = X(:,2086:end);
% Train a first sparse autoencoder with default settings.
autoenc = trainAutoencoder(X1);
% Reconstruct inputs.
XReconstructed1 = predict(autoenc,X1);
% Compute the mean squared reconstruction error.
mseError1 = mse(X1-XReconstructed1)
% convert existed autoenc to network:
net = network(autoenc);
% retrain autoenc(net):
net = train(net,X2,X2);
% Reconstruct inputs.
XReconstructed2 = net(X2);
% Compute the mean squared reconstruction error.
mseError2 = mse(X2-XReconstructed2)
% compare biases
figure
bar([net.b{1} autoenc.EncoderBiases])
% compare weights
figure
plot(autoenc.EncoderWeights-net.IW{1})
% extract features from autoencoder
features1 = encode(autoenc,X1);
% create encoder form trained network
encoder = network;
% Define topology
encoder.numInputs = 1;
encoder.numLayers = 1;
encoder.inputConnect(1,1) = 1;
encoder.outputConnect = 1;
encoder.biasConnect = 1;
% Set values for labels
encoder.name = 'Encoder';
encoder.layers{1}.name = 'Encoder';
% Copy parameters from input network
encoder.inputs{1}.size = net.inputs{1}.size;
encoder.layers{1}.size = net.layers{1}.size;
encoder.layers{1}.transferFcn = net.layers{1}.transferFcn;
encoder.IW{1,1} = net.IW{1,1};
encoder.b{1} = net.b{1};
% Set a training function
encoder.trainFcn = net.trainFcn;
% Set the input
encoderStruct = struct(encoder);
networkStruct = struct(net);
encoderStruct.inputs{1} = networkStruct.inputs{1};
encoder = network(encoderStruct);
% extract features from net
features2 = encoder(X1);
% compare
figure
bar([features1(:,1),features2(:,1)])
2 Comments
Giuseppe Bisazza
on 1 Oct 2021
I need to extract the decoder part instead of the encoder from a trained autoencoder. Could you please help me?
See Also
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!