How can I get verification code for matlab online?
4 views (last 30 days)
Show older comments
I need basic introduction of Matlab.
Answers (3)
Munirah Abdulraheem
on 24 Feb 2021
betaHat0 = M0.Coefficients.Estimate;
yHat0 = [1,X2005]*betaHat0;
D = dates(end);
Xm = min([X0(:);X2005']);
XM = max([X0(:);X2005']);
Ym = min([y0;yHat0]);
YM = max([y0;yHat0]);
% Estimate a VAR(1) model for the differenced predictors (with
% undifferenced |AGE|):
numLags = 1;
D1X0PreSample = D1X0(1:numLags,:);
D1X0Sample = D1X0(numLags+1:end,:);
numPreds0 = numParams0-1;
VARSpec = vgxvarx(vgxset('n',numPreds0,'Constant',true,'nAR',numLags),...
D1X0Sample,[],D1X0PreSample);
% Forecast the predictors in D1X0:
horizon = 1;
ForecastD1X0 = vgxpred(VARSpec,horizon,[],D1X0);
% Integrate the differenced forecast to obtain the undifferenced forecast:
ForecastX0(1) = ForecastD1X0(1); % AGE
ForecastX0(2:4) = X0(end,2:4)+ForecastD1X0(2:4); % Other predictors
Xm = min([X0(:);ForecastX0(:)]);
XM = max([X0(:);ForecastX0(:)]);
% Forecast the response from the regression model:
ForecastY0 = [1,ForecastX0]*betaHat0;
Ym = min([y0;ForecastY0]);
YM = max([y0;ForecastY0]);
Box_Jenkins = ForecastY0;
4 Comments
See Also
Categories
Find more on Linear and Nonlinear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!