14 views (last 30 days)

Does anyone know why MATLAB's IRR function gives a different answer from Excel's IRR? This is the cash flow I am interested in computing the internal rate of return for:

-$0 initial investment -the following investments over the following 46 years: [-$1,959.68, -$2,176.69, -$2,572.15, -$3,332.49, -$4,071.79, -$4,005.07, -$4,426.26, -$4,853.17, -$5,078.16, -$5,259.00, -$5,719.65, -$5,778.16, -$5,778.78, -$6,709.74, -$6,406.67, -$6,061.45, -$6,162.63, -$7,278.67, -$8,162.80, -$8,043.16, -$7,873.71, -$8,514.61, -$8,895.17, -$8,871.94, -$10,229.43, -$9,468.29, -$10,131.22, -$9,839.06, -$9,430.92, -$10,078.02, -$10,711.78, -$10,997.18, -$11,463.98, -$11,059.54, -$10,232.35, -$11,112.26, -$11,150.95, -$10,579.02, -$10,990.76, -$11,256.92, -$11,982.57, -$10,209.69, -$10,858.31, -$11,420.19, -$11,180.92, -$9,809.15] -the following payouts after the above investments: [$20,038.39, $20,163.46, $20,289.30, $20,415.93, $20,418.00, $20,420.07, $20,422.14, $20,424.21, $20,426.28, $20,424.21, $20,422.14, $20,420.07, $20,418.00, $20,415.93, $20,357.94, $14,448.15]

so amalgamating the above vector gives us

vec=[0.00, -1959.68, -2176.69, -2572.15, -3332.49, -4071.79, -4005.07, -4426.26, -4853.17, -5078.16, -5259.00, -5719.65, -5778.16, -5778.78, -6709.74, -6406.67, -6061.45, -6162.63, -7278.67, -8162.80, -8043.16, -7873.71, -8514.61, -8895.17, -8871.94, -10229.43, -9468.29, -10131.22, -9839.06, -9430.92, -10078.02, -10711.78, -10997.18, -11463.98, -11059.54, -10232.35, -11112.26, -11150.95, -10579.02, -10990.76, -11256.92, -11982.57, -10209.69, -10858.31, -11420.19, -11180.92, -9809.15, 20038.39, 20163.46, 20289.30, 20415.93, 20418.00, 20420.07, 20422.14, 20424.21, 20426.28, 20424.21, 20422.14, 20420.07, 20418.00, 20415.93, 20357.94, 14448.15];

and then computing the irr:

>> irr(vec)

ans =

Inf

The answer is an infinte ROR! Plugging this into Excel and using their IRR function, however, gives an IRR of -0.58%.

Why is there this discrepancy? I'd imagine MATLAB is numerically solving the equating the discounted sum of initial investment plus discounted cash flows to zero, but maybe it's not properly searching for the zero of the associated function to compute the IRR.

Is this the case and if so, is there a way to rectify this?

Kawee Numpacharoen
on 17 Oct 2017

If you remove zero at the beginning, you will get this

>> vec=[-1959.68, -2176.69, -2572.15, -3332.49, -4071.79, -4005.07, -4426.26, -4853.17, -5078.16, -5259.00, -5719.65, -5778.16, -5778.78, -6709.74, -6406.67, -6061.45, -6162.63, -7278.67, -8162.80, -8043.16, -7873.71, -8514.61, -8895.17, -8871.94, -10229.43, -9468.29, -10131.22, -9839.06, -9430.92, -10078.02, -10711.78, -10997.18, -11463.98, -11059.54, -10232.35, -11112.26, -11150.95, -10579.02, -10990.76, -11256.92, -11982.57, -10209.69, -10858.31, -11420.19, -11180.92, -9809.15, 20038.39, 20163.46, 20289.30, 20415.93, 20418.00, 20420.07, 20422.14, 20424.21, 20426.28, 20424.21, 20422.14, 20420.07, 20418.00, 20415.93, 20357.94, 14448.15];

>> irr(vec)

Warning: Multiple rates of return

> In irr (line 172)

ans =

-0.005793443616722

Sign in to answer this question.

Opportunities for recent engineering grads.

Apply Today
## 3 Comments

## Direct link to this comment

https://www.mathworks.com/matlabcentral/answers/361055-internal-rate-of-return#comment_492486

⋮## Direct link to this comment

https://www.mathworks.com/matlabcentral/answers/361055-internal-rate-of-return#comment_492486

## Direct link to this comment

https://www.mathworks.com/matlabcentral/answers/361055-internal-rate-of-return#comment_492489

⋮## Direct link to this comment

https://www.mathworks.com/matlabcentral/answers/361055-internal-rate-of-return#comment_492489

## Direct link to this comment

https://www.mathworks.com/matlabcentral/answers/361055-internal-rate-of-return#comment_492495

⋮## Direct link to this comment

https://www.mathworks.com/matlabcentral/answers/361055-internal-rate-of-return#comment_492495

Sign in to comment.