convolution integral with dde

8 views (last 30 days)
Angie
Angie on 10 Jun 2019
Commented: Satheesh oe on 20 Dec 2019
Hi guys, I am trying to solve this differential equation using dde. I have a problem with the integral term. In the code shown below, tau is the delay but I cannot just specify a constant value because it is also in the integral which goes from 0 to t. Does anywone know how to deal with it? Thank you!
%%
function sol = exer_3
sol = dde23(@exer3f,tau,[0; 0],[0, 10]);
figure
plot(sol.x,sol.y)
function v = exer3f(t,y,Z)
k = 125; m = 5; F = 1; w = 8;
c=@(t)exp(-t^2);
ylag = Z(:,1);
v = zeros(2,1);
v(1)=y(2);
v(2) = -(k*y(1) - F*cos(w*t) + integral(@(tau)c(tau).*ylag(1), 0, t,'ArrayValued',true))./m;
  4 Comments
Torsten
Torsten on 12 Jun 2019
Edited: Torsten on 12 Jun 2019
If you substitute
y = u'
you arrive at the integro-differential equation
y'(t) = F/m * cos(w*t) - k/m*u(0) - 1/m * integral_{0}^{t} y(s)*(c(t-s)+k) ds
which has the required form.
Satheesh oe
Satheesh oe on 20 Dec 2019
Hi,
can i know why there is (+k) tem in the integral "(c(t-s)+k)".
Regards,
satheesh

Sign in to comment.

Answers (0)

Categories

Find more on Numerical Integration and Differential Equations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!