15 views (last 30 days)

Show older comments

I have the graph below. It was plotted using the code below:

%% matrix (:,4) is the weight of the corresponding matrix(:1:2) branches. Ignore matrix(:,3).

nodes = [];

for i = 1:1:size(matrix,1)

if matrix(i,4) <= 10000

nodes = [nodes,matrix(i,1:2)];

end

end

nodes_cellarray{:} = nodes;

set(figure, 'Visible', 'on');

Graph = graph(matrix(:,1),matrix(:,2));

plot_array = plot(Graph, 'layout', 'auto');

% plot_array.EdgeColor = 'red';

highlight(plot_array,nodes_cellarray{:},'EdgeColor','r','NodeColor','r','LineWidth',4);

I have attached the matrix23.xlsx file that has the matrix 'matrix' used above.

Deepak Kumar
on 3 Jan 2020

Refer the below MATLAB documentation link to get more insight about "heatmap" function

Walter Roberson
on 3 Jan 2020

t = readtable('matrix23.xlsx');

mask = t{:,3} == 65535 | t{:,4} == 65535;

t(mask,:) = [];

figure(1)

h = heatmap(t, 'Var1', 'Var2', 'ColorVariable', 'Var3');

h.GridVisible = false;

figure(2)

subplot(1,3,1);

scatter(t{:,1}, t{:,2}, [], t{:,3});

title('scatter');

A = sparse(t{:,1}, t{:,2}, t{:,3}, 2600, 2600);

subplot(1,3,2)

spy(A);

title('normal spy');

subplot(1,3,3)

r = symrcm(A);

spy(A(r,r));

title('spy symrcm');

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!