Discrepancy Between ODE45 and Solve
11 views (last 30 days)
Show older comments
Im trying to solve a simple forced harmonic oscillators for different forcing frequencies. Solving it with Dsolve and plotting the solution returns the expected values that i found through hand calculations. Using matlab ODE 45 returns the exact same values as Dsolve but they are 10 times larger (10^-3 instead of 10^-4). I cant not figure out why there is a large discrepancy betweent the two methods. Any ideas?
Dsolve
syms x(t) w
xd = diff(x, t);
xdd = diff(xd, t);
k = 4000; m = 10; c = 200;
wn = sqrt(k/m);
ode = sin(t*w) == xdd*m + k*x +c*xd;
cond = [x(0) == 0 , xd(0) == 0];
solu = dsolve(ode, cond);
equ = simplify(solu);
t = 0:.001:5;
for w = 10:4:30
hold on
data = eval(equ);
plot(t, data,'DisplayName',num2str(w))
xlabel('Time')
ylabel('Displacement')
end
legend
ODE
function dxdt=ex1(t,x,w)
wn= 20;
z= .5;
dxdt=[x(2);1*sin(w*t)-2*z*wn*x(2)-(wn^2)*x(1)];
%%
%******ode45****Example*****************
clc; clear;
% w = 14.14;
for w = 10:4:30
options = odeset('RelTol', 1e-13, 'AbsTol', 1e-15);
[t,x]=ode45(@(t,x) HW361_7_1ODE(t,x,w), [0:.001:5] ,[0 0]);
% % % % ***************************************
hold on
% subplot(3,1,1)
plot(t,x(:,1),'DisplayName',num2str(w))
grid
xlabel('Time')
ylabel('Displacement')
legend
% %
% hold on
% subplot(3,1,2)
% plot(t,x(:,2),'DisplayName',num2str(w))
% grid
% xlabel('Time')
% ylabel('Velocity')
% legend
%
% hold on
% subplot(3,1,3)
% plot(x(:,1), x(:,2),'DisplayName',num2str(w))
% grid
% xlabel('Displacement')
% ylabel('Velocity')
% legend
end
% %*********************************
1 Comment
Answers (1)
James Tursa
on 12 Apr 2020
For dslove, the sin(w*t) signal gets divided by m, which is 10.
For ode45, you don't do this, you just have sin(w*t).
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!