# extract valuable data from signal

17 views (last 30 days)

Show older comments

I have a signal (vector) consists of many blocks (for example five blocks）.I want to extract, separate, these blocks (that contain a valuable information ) from the main signal and store every block in a vector.

For example like: https://encrypted-tbn3.gstatic.com/images?q=tbn:ANd9GcRVDJyqxKO-48fA07OdnPPLfPIwFpXg8AqbmoDwAQ-X4dK-5bOJ

So if I have an input vector (V), The result , in our case, should be five mini vectors (v1, v2, v3, v4, v5).

I tried to apply this method: If a specific consecutive elements from (V) vector have a value above a threshold (for example 0.02 > Thr) start put the elements in a a mini vector, but it does not work because values in the input vector (V) are getting positive and negative.

##### 1 Comment

### Accepted Answer

Image Analyst
on 16 Dec 2012

Edited: Image Analyst
on 16 Dec 2012

Try something like this, where I take the absolute value, then filter it to get rid of the oscillating parts, then take the difference, and finally extract the 5 bursts:

clc; % Clear the command window.

close all; % Close all figures (except those of imtool.)

clear; % Erase all existing variables. Or clearvars if you want.

workspace; % Make sure the workspace panel is showing.

format longg;

format compact;

fontSize = 20;

% Generate sample data.

signal = 0.003 * rand(1, 550) - 0.0015

signal(50:100) = 0.03 * rand(1, 51) - 0.015

signal(150:200) = 0.03 * rand(1, 51) - 0.015

signal(250:300) = 0.03 * rand(1, 51) - 0.015

signal(350:400) = 0.03 * rand(1, 51) - 0.015

signal(450:500) = 0.03 * rand(1, 51) - 0.015

subplot(3, 1, 1);

plot(signal);

title('Original Signal', 'FontSize', fontSize);

grid on;

% Enlarge figure to full screen.

set(gcf, 'units','normalized','outerposition',[0 0 1 1]);

% Take absolute value and median filter to get rid of oscillations.

filteredSignal = medfilt1(abs(signal), 13);

subplot(3, 1, 2);

plot(filteredSignal);

title('Filtered Signal', 'FontSize', fontSize);

% Find the quiet parts between the bursts.

quietParts = filteredSignal < 0.002;

subplot(3, 1, 3);

plot(quietParts, 'LineWidth', 3);

ylim([0 1.2]);

title('Quiet Parts', 'FontSize', fontSize);

% Find the starting and ending elements of the bursts.

startingBlockIndexes = find(diff(quietParts) < 0)

endingBlockIndexes = find(diff(quietParts) > 0)

% Extract the 5 blocks (known to be exactly 5)

v1 = signal(startingBlockIndexes(1):endingBlockIndexes(1));

v2 = signal(startingBlockIndexes(2):endingBlockIndexes(2));

v3 = signal(startingBlockIndexes(3):endingBlockIndexes(3));

v4 = signal(startingBlockIndexes(4):endingBlockIndexes(4));

v5 = signal(startingBlockIndexes(5):endingBlockIndexes(5));

% Plot the 5 signals.

figure;

subplot(5, 1, 1);

plot(v1);

grid on;

title('V1', 'FontSize', fontSize);

subplot(5, 1, 2);

plot(v2);

grid on;

title('V2', 'FontSize', fontSize);

subplot(5, 1, 3);

plot(v3);

grid on;

title('V3', 'FontSize', fontSize);

subplot(5, 1, 4);

plot(v4);

grid on;

title('V4', 'FontSize', fontSize);

subplot(5, 1, 5);

plot(v5);

grid on;

title('V5', 'FontSize', fontSize);

% Enlarge figure to full screen.

set(gcf, 'units','normalized','outerposition',[0 0 1 1]);

##### 2 Comments

Image Analyst
on 17 Dec 2012

### More Answers (1)

### See Also

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!