MATLAB Answers

0

Adaptive Weighted Median Filter

Asked by Elysi Cochin on 14 Jan 2013
please can someone help me with "Adaptive Weighted Median Filter" to remove speckle noise....

  0 Comments

Sign in to comment.

1 Answer

Answer by Image Analyst
on 14 Jan 2013
 Accepted Answer

Lots of things could be called that - there are maybe a dozen, or more, variants. Here's an example of how I use an adaptive median filter to remove salt and pepper noise. Feel free to adapt it to your particular algorithm.
clc; % Clear command window.
clear; % Delete all variables.
close all; % Close all figure windows except those created by imtool.
imtool close all; % Close all figure windows created by imtool.
workspace; % Make sure the workspace panel is showing.
fontSize = 15;
% Read in a standard MATLAB color demo image.
folder = fullfile(matlabroot, '\toolbox\images\imdemos');
baseFileName = 'peppers.png';
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
if ~exist(fullFileName, 'file')
% Didn't find it there. Check the search path for it.
fullFileName = baseFileName; % No path this time.
if ~exist(fullFileName, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
rgbImage = imread(fullFileName);
% Get the dimensions of the image. numberOfColorBands should be = 3.
[rows columns numberOfColorBands] = size(rgbImage);
% Display the original color image.
subplot(3, 4, 1);
imshow(rgbImage);
title('Original color Image', 'FontSize', fontSize);
% Enlarge figure to full screen.
set(gcf, 'Position', get(0,'Screensize'));
% Extract the individual red, green, and blue color channels.
redChannel = rgbImage(:, :, 1);
greenChannel = rgbImage(:, :, 2);
blueChannel = rgbImage(:, :, 3);
% Display the individual red, green, and blue color channels.
subplot(3, 4, 2);
imshow(redChannel);
title('Red Channel', 'FontSize', fontSize);
subplot(3, 4, 3);
imshow(greenChannel);
title('Green Channel', 'FontSize', fontSize);
subplot(3, 4, 4);
imshow(blueChannel);
title('Blue Channel', 'FontSize', fontSize);
% Generate a noisy image. This has salt and pepper noise independently on
% each color channel so the noise may be colored.
noisyRGB = imnoise(rgbImage,'salt & pepper', 0.05);
subplot(3, 4, 5);
imshow(noisyRGB);
title('Image with Salt and Pepper Noise', 'FontSize', fontSize);
% Extract the individual red, green, and blue color channels.
redChannel = noisyRGB(:, :, 1);
greenChannel = noisyRGB(:, :, 2);
blueChannel = noisyRGB(:, :, 3);
% Display the noisy channel images.
subplot(3, 4, 6);
imshow(redChannel);
title('Noisy Red Channel', 'FontSize', fontSize);
subplot(3, 4, 7);
imshow(greenChannel);
title('Noisy Green Channel', 'FontSize', fontSize);
subplot(3, 4, 8);
imshow(blueChannel);
title('Noisy Blue Channel', 'FontSize', fontSize);
% Median Filter the channels:
redMF = medfilt2(redChannel, [3 3]);
greenMF = medfilt2(greenChannel, [3 3]);
blueMF = medfilt2(blueChannel, [3 3]);
% Find the noise in the red.
noiseImage = (redChannel == 0 | redChannel == 255);
% Get rid of the noise in the red by replacing with median.
noiseFreeRed = redChannel;
noiseFreeRed(noiseImage) = redMF(noiseImage);
% Find the noise in the green.
noiseImage = (greenChannel == 0 | greenChannel == 255);
% Get rid of the noise in the green by replacing with median.
noiseFreeGreen = greenChannel;
noiseFreeGreen(noiseImage) = greenMF(noiseImage);
% Find the noise in the blue.
noiseImage = (blueChannel == 0 | blueChannel == 255);
% Get rid of the noise in the blue by replacing with median.
noiseFreeBlue = blueChannel;
noiseFreeBlue(noiseImage) = blueMF(noiseImage);
% Reconstruct the noise free RGB image
rgbFixed = cat(3, noiseFreeRed, noiseFreeGreen, noiseFreeBlue);
subplot(3, 4, 9);
imshow(rgbFixed);
title('Restored Image', 'FontSize', fontSize);

  0 Comments

Sign in to comment.