Dsolve giving implicit solution
11 views (last 30 days)
Show older comments
Shahsank pandey
on 1 Oct 2020
Commented: Walter Roberson
on 2 Oct 2020
Hello,
I am new to Matlab and am trying to solve a heat transfer problem between two heated bodies. I wrote the commands as below, where A,B,C,D and E are all constant values which are already defined and caluclated. On attempting to solve the diff eqn though I am getting this kind of message. Is there something I am doing wrong or should use a different solver or is there a way to make sense out of the solution. My aim would be to get a plot of T vs t. The Diff eqn itself is not implicit so not sure why the solution is coming out implicit.
>> syms A B C D E T(t);
>> ode = diff(T,t) == B + C - A*(T^4) - D*T;
>> cond = T(0) == 673;
>> Tsol(t) = dsolve(ode,cond)
Warning: Unable to find explicit solution. Returning implicit solution instead.
> In dsolve (line 208)
Tsol(t) =
solve(t + symsum(root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k)*(log(T - 4*B*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) - 4*C*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) + 3*D*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k)*T) + 3*log(A) + log(root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k)) + log(12*D*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) + 4) + pi*1i), k, 1, 4) - symsum(root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k)*(log(2019*D*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) - 4*C*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) - 4*B*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) + 673) + 3*log(A) + log(root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k)) + log(12*D*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) + 4) + pi*1i), k, 1, 4) == 0, T)
2 Comments
Walter Roberson
on 2 Oct 2020
I do not recall ever having seen solve() introduce a variable named b . Especially not within root() -- the variable that it takes the root() of is almost always z, except in cases where z already occurs inside the expression, in which case root() uses numbered z variables such as z1 .... At least in my experience.
Accepted Answer
Alan Stevens
on 1 Oct 2020
Edited: Alan Stevens
on 1 Oct 2020
Look at documentation on ode45. You don't need a symbolic solution if you just want to get T as a function of t.
Like the following, for example:
tspan = [0 1]; % replace the 1 with your desired end time
T0 = 673;
[t, T] = ode45(@dTdtfn, tspan, T0);
plot(t,T),grid
xlabel('time'),ylabel('Temperature')
function dTdt = dTdtfn(~,T)
% Define A B C and D
A = 10^-6; B = 1; C = 1; D = 10^-2; % Replace with your values
dTdt = B + C - A*(T^4) - D*T;
end
More Answers (0)
See Also
Categories
Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!