Quadratic Congruence is a modular equation of the form:
.
In this exercise you will be given a vector containing the coefficients of a quadratic polynomial (
), and a modulus base (m). Using these data, create a function that outputs the pair (
), which are the 'primitive' solutions to the quadratic congruence.
For example consider the congruence:
, the solution is
, since:
NOTE: A primitive modulus to base m, can only have values from 0 to
. This is a simplified problem, in which the quadratic polynomials given in the test suite, are all factorable, and the modulus base are all odd primes.
Solution Stats
Problem Comments
Solution Comments
Show comments
Loading...
Problem Recent Solvers17
Suggested Problems
-
Find the alphabetic word product
3457 Solvers
-
2164 Solvers
-
Square Digits Number Chain Terminal Value (Inspired by Project Euler Problem 92)
253 Solvers
-
Return fibonacci sequence do not use loop and condition version 2
60 Solvers
-
It's going down. We're finding simbers!
86 Solvers
More from this Author116
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!