Problem 55705. AZPC Oddly Triangular: N=10/11/13/14 Digits 3/7/9 Part 3 of 5
AZPC created the Oddly Triangular contest on 9/7/22. The challenge is to find the longest sequence of N odd digits such that sum(1:value) is composed of only odd digits. The contest ended on 9/8/22 as Rokicki created a 3.6 million digit solution with the implication that an infinite length pattern had been determined. [N=2, 17, sum(1:17)=153]
This is step three of the steps and processing types to find Rokicki's result.
This challenge is to find a solution subset with lengths 10, 11, 13, and 14 that only use the digits 3/7/9 in M and begin with 339 (10/11), 3399(13), and 33999(14). The sum(1:M(i)) may only use odd digits. Normal double variables will not suffice for N>8 solutions as the eps is >1 for the sums.
Usage of matlab java math can be seen in the Test Suite. A function zcombvec is given in the function template to facilitate creation of all vectors that only use the 3/7/9 digits. Usage of zcombvec is not required.
M=OddlyTri339_379(N,Q) where N=digit length, Q=number of solutions, M is a double vector of the Q values.
Solution Stats
Solution Comments
Show commentsProblem Recent Solvers5
Suggested Problems
-
25314 Solvers
-
2309 Solvers
-
349 Solvers
-
Sum of first n terms of a harmonic progression
417 Solvers
-
225 Solvers
More from this Author308
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!