Network-based Dimensionality Reduction and Analysis (NDA)
nda_matlab
Network-based dimensionality reduction and analysis in MATLAB
This package provides Network-based dimensionality reduction and analysis.
-
Network-based dimensionality reduction and analysis.
-
Dimensional reduction.
-
Plot and biplot functions
-
Data generation
Author
- Zsolt T. Kosztyan
Contributor
- Zsolt T. Kosztyan
Maintainer
- Zsolt T. Kosztyan
Outputs:
Scores: n by m matrix of factor scores, where n is the number of rows in a datasource, m is tne number of latent factors CMTX: m by m factor correlation matrix COMMUNALITY: n by 1 row vector of communalities LOADINGS: s by m matrix of factor loadings, where s is the number of selected indicators LTABLE: s by m table of factor loadings, where s is the number of % selected indicators MEMBERSHIPS: m by 1 vector of membership
Input:
data: n by M matrix/table/structure of data source (mandatory)
Optional input parameters:
XHeader: M by 1 cell array of variable names CorrMethod|cor_method: Correlation method (optional) Pearson|pearson|'1'|1: Pearson's correlation (default) Spearman|spearman|'2'|2: Spearman's correlation Kendall|kendall|'3'|3: Kendall's correlation Distance|distance|'4'|4: Distance correlation -otherwise: 1 (Pearson's correlation) MinCor2|min_R: Minimal square correlation between indicators (default: 0) MinimalCommunity|min_comm: Minimal number of indicators in a community (default: 2) Gamma: Gamma parameter in multiresolution null_modell (default: 1) NullModelType|null_model_type (default: 1); NewmannGrivan|'1'|1: Newmann-Grivan's null modell AvgDet: Null model is the mean of square correlations between indicators MinDet,min_det: Null modell is the specified minimal square correlation (min_det) MinEigCentValue|min_evalue: Minimal EVC value (default: 0.00) MinCommunality|min_communality: Minimal communality value of indicators (default: 0.25) ComCommunalities|com_communalities=0.0: Minimal common communalities RotateMethod: Rotation method (default: none); Biplots: Draw biplots (default: false) cuts: Draw correlation graph with cuts value (default: 0 => No correlation graph)
Usages:
[Scores,CMTX,COMMUNALITY,LOADINGS,LTABLE,MEMBERSHIPS]=nda(data) [Scores,CMTX,COMMUNALITY,LOADINGS,LTABLE,MEMBERSHIPS]=nda(data,Xheader) [Scores,CMTX,COMMUNALITY,LOADINGS,LTABLE,MEMBERSHIPS]=nda(data,Xheader,...)
Examples:
load CWTS_2020 [Scores,CMTX,COMMUNALITY,LOADINGS,LTABLE,MEMBERSHIPS]=nda(CWTS_2020) [Scores,CMTX,COMMUNALITY,LOADINGS,LTABLE,MEMBERSHIPS]=nda(CWTS_2020,'RotationMethod','varimax','MinimalCommunity',3)
Requirements:
Eigenvector centralities (if Matlab release is older than R2020a) (Contributors): Xi-Nian Zuo, Chinese Academy of Sciences, 2010 Rick Betzel, Indiana University, 2012 Mika Rubinov, University of Cambridge, 2015
Modified GenLouvain toolbox (Contributurs): Lucas G. S. Jeub, Marya Bazzi, Inderjit S. Jutla, and Peter J. Mucha, "A generalized Louvain method for community detection implemented in MATLAB," https://github.com/GenLouvain/GenLouvain (2011-2019).
Cite As
Kosztyán, Zsolt Tibor (2024). Network-based Dimensionality Reduction and Analysis (NDA) (https://github.com/kzst/nda_matlab/releases/tag/0.1.6), GitHub. Retrieved .
Kosztyán, Zsolt T., et al. “Network-Based Dimensionality Reduction of High-Dimensional, Low-Sample-Size Datasets.” Knowledge-Based Systems, vol. 251, Elsevier BV, Sept. 2022, p. 109180, doi:10.1016/j.knosys.2022.109180.
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
EVC
GenLouvain
GenLouvain/Assignment
GenLouvain/HelperFunctions
GenLouvain/MEX_SRC
Version | Published | Release Notes | |
---|---|---|---|
0.1.6 |