Network-based Dimensionality Reduction and Analysis (NDA)

Network-based dimensionality reduction and analysis in MATLAB
65 Downloads
Updated 23 Mar 2023

nda_matlab

Network-based dimensionality reduction and analysis in MATLAB

This package provides Network-based dimensionality reduction and analysis.

  • Network-based dimensionality reduction and analysis.

  • Dimensional reduction.

  • Plot and biplot functions

  • Data generation

Author

  • Zsolt T. Kosztyan

Contributor

  • Zsolt T. Kosztyan

Maintainer

  • Zsolt T. Kosztyan

Outputs:

Scores: n by m matrix of factor scores, where n is the number of rows in a datasource, m is tne number of latent factors CMTX: m by m factor correlation matrix COMMUNALITY: n by 1 row vector of communalities LOADINGS: s by m matrix of factor loadings, where s is the number of selected indicators LTABLE: s by m table of factor loadings, where s is the number of % selected indicators MEMBERSHIPS: m by 1 vector of membership

Input:

data: n by M matrix/table/structure of data source (mandatory)

Optional input parameters:

XHeader: M by 1 cell array of variable names CorrMethod|cor_method: Correlation method (optional) Pearson|pearson|'1'|1: Pearson's correlation (default) Spearman|spearman|'2'|2: Spearman's correlation Kendall|kendall|'3'|3: Kendall's correlation Distance|distance|'4'|4: Distance correlation -otherwise: 1 (Pearson's correlation) MinCor2|min_R: Minimal square correlation between indicators (default: 0) MinimalCommunity|min_comm: Minimal number of indicators in a community (default: 2) Gamma: Gamma parameter in multiresolution null_modell (default: 1) NullModelType|null_model_type (default: 1); NewmannGrivan|'1'|1: Newmann-Grivan's null modell AvgDet: Null model is the mean of square correlations between indicators MinDet,min_det: Null modell is the specified minimal square correlation (min_det) MinEigCentValue|min_evalue: Minimal EVC value (default: 0.00) MinCommunality|min_communality: Minimal communality value of indicators (default: 0.25) ComCommunalities|com_communalities=0.0: Minimal common communalities RotateMethod: Rotation method (default: none); Biplots: Draw biplots (default: false) cuts: Draw correlation graph with cuts value (default: 0 => No correlation graph)

Usages:

[Scores,CMTX,COMMUNALITY,LOADINGS,LTABLE,MEMBERSHIPS]=nda(data) [Scores,CMTX,COMMUNALITY,LOADINGS,LTABLE,MEMBERSHIPS]=nda(data,Xheader) [Scores,CMTX,COMMUNALITY,LOADINGS,LTABLE,MEMBERSHIPS]=nda(data,Xheader,...)

Examples:

load CWTS_2020 [Scores,CMTX,COMMUNALITY,LOADINGS,LTABLE,MEMBERSHIPS]=nda(CWTS_2020) [Scores,CMTX,COMMUNALITY,LOADINGS,LTABLE,MEMBERSHIPS]=nda(CWTS_2020,'RotationMethod','varimax','MinimalCommunity',3)

Requirements:

Eigenvector centralities (if Matlab release is older than R2020a) (Contributors): Xi-Nian Zuo, Chinese Academy of Sciences, 2010 Rick Betzel, Indiana University, 2012 Mika Rubinov, University of Cambridge, 2015

Modified GenLouvain toolbox (Contributurs): Lucas G. S. Jeub, Marya Bazzi, Inderjit S. Jutla, and Peter J. Mucha, "A generalized Louvain method for community detection implemented in MATLAB," https://github.com/GenLouvain/GenLouvain (2011-2019).

Cite As

Kosztyán, Zsolt Tibor (2024). Network-based Dimensionality Reduction and Analysis (NDA) (https://github.com/kzst/nda_matlab/releases/tag/0.1.6), GitHub. Retrieved .

Kosztyán, Zsolt T., et al. “Network-Based Dimensionality Reduction of High-Dimensional, Low-Sample-Size Datasets.” Knowledge-Based Systems, vol. 251, Elsevier BV, Sept. 2022, p. 109180, doi:10.1016/j.knosys.2022.109180.

View more styles
MATLAB Release Compatibility
Created with R2022a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Tags Add Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes
0.1.6

To view or report issues in this GitHub add-on, visit the GitHub Repository.
To view or report issues in this GitHub add-on, visit the GitHub Repository.