Gradient-Based Optimizer
Version 1.0.0 (6.89 KB) by
iman ahmadianfar
GBO, inspired by the gradient-based Newton’s method, uses two main operators: gradient search rule (GSR) and local escaping operator (LEO).
The GBO, inspired by the gradient-based Newton’s method, uses two main operators: gradient search rule (GSR) and local escaping operator (LEO) and a set of vectors to explore the search space. The GSR employs the gradient-based method to enhance the exploration tendency and accelerate the convergence rate to achieve better positions in the search space. The LEO enables the proposed GBO to escape from local optima. The performance of the new algorithm was evaluated in two phases. 28 mathematical test functions were first used to evaluate various characteristics of the GBO, and then six engineering problems were optimized by the GBO. In the first phase, the GBO was compared with five existing optimization algorithms, indicating that the GBO yielded very promising results due to its enhanced capabilities of exploration, exploitation, convergence, and effective avoidance of local optima. The second phase also demonstrated the superior performance of the GBO in solving complex real-world engineering problems.
Cite As
iman ahmadianfar (2025). Gradient-Based Optimizer (https://www.mathworks.com/matlabcentral/fileexchange/131588-gradient-based-optimizer), MATLAB Central File Exchange. Retrieved .
Ahmadianfar, Iman, et al. “Gradient-Based Optimizer: A New Metaheuristic Optimization Algorithm.” Information Sciences, vol. 540, Elsevier BV, Nov. 2020, pp. 131–59, doi:10.1016/j.ins.2020.06.037.
MATLAB Release Compatibility
Created with
R2023a
Compatible with any release
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
| Version | Published | Release Notes | |
|---|---|---|---|
| 1.0.0 |
