Fundamental Matrix Computation

version (12 KB) by Omid Aghazadeh
This package, implements the 3 standard algorithms for the computation of the fundamental matrix.


Updated 9 May 2010

View License

The implemented algorithms are:
1- The normalized 8 point algorithm
2- The algebraic error minimization(iterative)
3- The geometric error minimization(iterative)
and are the algorithms 11.1 to 11.3 of R. Hartley and A. Zisserman "Multiple View Geometry in Computer Vision".
The geometric error minimization includes the gold standard algorithm(MLE) as well as the Sampson approximation to the geometric error.
Usage of the code should be straightforward. The inputs and outputs to the functions, their dimensions and descriptions are available in the headers of each file. try help det_F_normalized_8point for example.
In order to be able to compare the performance of the algorithms, the same criterion as the book: the residual is used(see compare_results.m).
Also, different noise models are utilized to test the robustness of the algorithms: Gaussian additive noise, uniform noise and spurious noise(which can be seen as outliers).
To get the best results, it is possible to initialize the gold standard algorithm with the estimation of F computed from the algebraic minimization algorithm.

Cite As

Omid Aghazadeh (2022). Fundamental Matrix Computation (, MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2009b
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!