In a number of vibration applications, systems under study are slightly non-linear. Cascade of Hammerstein models conveniently allows one to describe such systems.
The Hammerstein Toolbox provides a simple method based on a phase property of exponential sine sweeps
to estimate the structural elements (Kernels) of such a model from only one measured response of the system.
[1] M. Rébillat, R. Hennequin, E. Corteel, B.F.G. Katz, "Identification of cascade of Hammerstein models for the description of non-linearities in vibrating devices", Journal of Sound and Vibration, Volume 330, Issue
5, Pages 1018-1038, February 2011.
[2] A. Novak, L. Simon, F. Kadlec, P. Lotton, "Nonlinear system identification using exponential swept-sine signal", IEEE Transactions on Instrumentation and Measurement, Volume 59, Issue 8, Pages 2220-2229, August 2010.
M. Rébillat / R. Hennequin / A. Novak (2019). Hammerstein Toolbox (https://www.mathworks.com/matlabcentral/fileexchange/30897-hammerstein-toolbox), MATLAB Central File Exchange. Retrieved .
1.6.0.0 | Updates by A. NOVAK (March 2015) |
|
1.5.0.0 | Updates by A. NOVAK, March 2015 |
|
1.4.0.0 | Licence Update. |
|
1.3.0.0 | Modifications done by A. Novak. |
|
1.2.0.0 | License update. |
|
1.1.0.0 | No other Matlab products required. |
Create scripts with code, output, and formatted text in a single executable document.
Kenji Kamada (view profile)
Christian Hofstetter (view profile)
If I want to verify the method on some general input signal, I get a scaling problem. I use :
for n = 1:order
yN = yN + convq(hhatN(n,:),xN.^n) ;
end
with xN being some jump function, for example.
jing zhang (view profile)
jing zhang (view profile)
Ren (view profile)