File Exchange

image thumbnail

Multi-objective optimization using Evolution Strategies (ES) as Evolutionary Algorithm (EA)

version 1.1 (15.2 KB) by Gilberto A. Ortiz
This function uses ES instead of GA as EA in the NSGA-II procedure for multi-objective optimization.


Updated 20 Nov 2014

View License

This function uses Evolution Strategies (ES) instead of Genetic Algorithms (GA) as Evolutionary Algorithm (EA) in the NSGA-II procedure for multi-objective optimization.
The algorithm is able to find the pareto optimal front in most of the functions implemented in the file 'Examples.m', but the algorithm is unable to find the Pareto optimal front of the functions ZDT1, ZDT2, ZDT3, ZDT4 (Cases 11, 12, 13, 14 in file 'Examples.m') when the number of states is set to 30 (for ZDT1, ZDT2, ZDT3) and 10 (for ZDT4) as Prof. Deb specified in [1], but the pareto is found if the number of states is set to 2 (in those examples).

I appreciate if you are able to find the mistake in the algorithm (if there is...) and let me know to make the respective corrections.

Feel free to send me your doubts, corrections and/or suggestions to my e-mail:


Thanks beforehand for downloading and reading this code, I hope it will be useful for you and other people working on multi-objective optimization.

The code is heavily commented.

Comments and Ratings (2)

Please how to dispaly the optimal results (values of x(1), x(2)....)?

Thank you.




Update content as a Toolbox

MATLAB Release Compatibility
Created with R2010b
Compatible with any release
Platform Compatibility
Windows macOS Linux

Discover Live Editor

Create scripts with code, output, and formatted text in a single executable document.

Learn About Live Editor