File Exchange ## FLMM2

version 1.0.0.0 (17.9 KB) by Roberto Garrappa

### Roberto Garrappa (view profile)

Fractional linear multistep methods of second order for fractional differential equations

21 Downloads

Updated 30 Jun 2014

View License

FLMM2 solves an initial value problem for a fractional differential equation (FDE) by means of some implicit fractional linear multistep methods (FLMMs) of the second order.
FLMMs are a generalization to FDEs of classical linar multistep methods and were introduced by Lubich in 1986. This code implements 3 different implicit FLMMs of the second order: the generalization of the classical Trapezoidal rule, the generalization of the Newton-Gregory formula and the generalization of the Backward Differentiation Formula (BDF); by default the BDF is selected when no other methods are specified.

### Comments and Ratings (4)

Vinícius Martinez

### Vinícius Martinez (view profile)

awesome!

Thank you for this amazing job.

fuchang wang

### fuchang wang (view profile)

a = 1 ; mu = 4 ;
fdefun = @(t,y) [ a-(mu+1)*y(1)+y(1)^2*y(2) ; mu*y(1)-y(1)^2*y(2) ] ;
Jfdefun = @(t,y) [ -(mu+1)+2*y(1)*y(2) , y(1)^2 ; mu-2*y(1)*y(2) , -y(1)^2 ] ;
alpha = 0.8 ;
t0 = 0 ; tfinal = 100 ; y0 = [ 0.2 ; 0.03] ;
h = 2^(-6) ;
[t, y_flmm2] = flmm2(alpha,fdefun,Jfdefun,t0,tfinal,y0,h) ;
[t, y_fde12] = fde12(alpha,fdefun,t0,tfinal,y0,h) ;
figure(1)
subplot(1,2,1),plot(t,y_flmm2(1,:),t,y_flmm2(2,:)) ;
xlabel('t') ; ylabel('y(t)') ;
legend('y_1(t)','y_2(t)') ;
title('FDE solved by the FLMM2.m code');
subplot(1,2,2),plot(y_flmm2(1,:),y_flmm2(2,:)) ;
xlabel('y1(t)') ; ylabel('y2(t)') ;
title('FDE solved by the FLMM2.m code');
figure(2)
subplot(1,2,1),plot(t,y_fde12(1,:),t,y_fde12(2,:)) ;
xlabel('t') ; ylabel('y(t)') ;
legend('y_1(t)','y_2(t)') ;
title('FDE solved by the FDE12.m code');
subplot(1,2,2),plot(y_fde12(1,:),y_fde12(2,:)) ;
xlabel('y1(t)') ; ylabel('y2(t)') ;
title('FDE solved by the FDE12.m code');

John Mike

### John Mike (view profile)

Very useful！ Excuse me, if the fractional differential equations include constant delay or time-varying delay, how do we solve it?

Betül Hiçdurmaz

### Betül Hiçdurmaz (view profile)

Very useful contribution, thanks

##### MATLAB Release Compatibility
Created with R2009b
Compatible with any release
##### Platform Compatibility
Windows macOS Linux

### Discover Live Editor

Create scripts with code, output, and formatted text in a single executable document.

Learn About Live Editor