kristinbranson/JAABA
The Janelia Automatic Animal Behavior Annotator (JAABA) is a machine learning-based system that enables researchers to automatically compute interpretable, quantitative statistics describing video of behaving animals. Through our system, users encode their intuition about the structure of behavior by labeling the behavior of the animal, e.g. walking, grooming, or following, in a small set of video frames. JAABA uses machine learning techniques to convert these manual labels into behavior detectors that can then be used to automatically classify the behaviors of animals in large data sets with high throughput. Our system combines an intuitive graphical user interface, a fast and powerful machine learning algorithm, and visualizations of the classifier into an interactive, usable system for creating automatic behavior detectors. JAABA is complementary to video-based tracking methods, and we envision that it will facilitate extraction of detailed, scientifically meaningful measurements of the behavioral effects in large experiments.
JAABA is an open-source, freely available program developed by members of the Branson lab at HHMI Janelia Farm. It is described in detail in the paper "JAABA: Interactive machine learning for automatic annotation of animal behavior", Kabra, Robie, et al., Nature Methods, 2012.
Cite As
Kristin (2026). kristinbranson/JAABA (https://github.com/kristinbranson/JAABA), GitHub. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Acknowledgements
Inspired by: Netlab, EllipseDraw1.0, Rotate Tick Label, savefig, findjobj - find java handles of Matlab graphic objects, Hatchfill, pdollar/toolbox
Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Versions that use the GitHub default branch cannot be downloaded
| Version | Published | Release Notes | |
|---|---|---|---|
| 1.0.6.0 |
|
