A Fusion of Time-Domain Descriptors for Improved Myoelectric Hand Control


Updated 22 Jun 2020

From GitHub

View License on GitHub

fTDD is a feature extraction algorithm for the classification of any kind of signals, although this was mainly developed for myoelectric, a.k.a, Electromyogram (EMG), signal feature extraction for prostheses control. The algorithm employs the orientation between a set of descriptors of muscular activities and a nonlinearly mapped version of them. It incorporates information about the Electromyogram (EMG) signal power spectrum characteristics derived from each analysis window while correlating that with the descriptors of the n'th previous windows for robust activity recognition. The proposed idea can be summarized in the following three steps:

1) Extract power spectrum moments from the current analysis window and its nonlinearly scaled version in time-domain through Fourier transform relations,
2) Compute the orientation between the two sets of moments, and
3) Apply data fusion on the resulting orientation features for the current and previous time windows and use the result as the final feature set.

[1] R. N. Khushaba, A. Al-Ani, A. Al-Timemy, A. Al-Jumaily, "A Fusion of Time-Domain Descriptors for Improved Myoelectric Hand Control", ISCIT2016 Conference, Greece, 2016.
[2] A. Al-Timemy, R. N. Khushaba, G. Bugmann, and J. Escudero, "Improving the Performance Against Force Variation of EMG Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees", IEEE Transactions on Neural Systems and Rehabilitation Engineering, DOI: 10.1109/TNSRE.2015.2445634, 2015.
[3] R. N. Khushaba, Maen Takruri, Jaime Valls Miro, and Sarath Kodagoda, "Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features", Neural Networks, vol. 55, pp. 42-58, 2014.

Cite As

Rami Khushaba (2023). getfTDDfeatures (, GitHub. Retrieved .

MATLAB Release Compatibility
Created with R2015b
Compatible with any release
Platform Compatibility
Windows macOS Linux
Find more on Statistics and Machine Learning Toolbox in Help Center and MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Versions that use the GitHub default branch cannot be downloaded

Version Published Release Notes

Added the online version in addition to the existing version.

paper link added
text updated
text update
title updated

To view or report issues in this GitHub add-on, visit the GitHub Repository.
To view or report issues in this GitHub add-on, visit the GitHub Repository.