Bisection Numerical Method
% Inputs: with examples
% AF = anonymous function equation: AF = @(x) 1-((20^2)./(9.81*(((3*x)+((x.^2)/2)).^3))).*(3+x);
% xb = initial guess x bracket = [xL xU], where xL = lower boundary x and xU = upper boundary x: xb = [0 2.5];
% ed = desired approximate relative error = |(current - previous)/current|: ed = 0.01;
% Outputs
% xR = x root
% err = approximate relative error
% n = number of iterations
% xRV = x root vector
% errV = approximate relative error vector
% AFD1 = anonymous function 1st derivative
% AFD2 = anonymous function 2nd derivative
Cite As
Roche de Guzman (2025). Bisection Numerical Method (https://www.mathworks.com/matlabcentral/fileexchange/61678-bisection-numerical-method), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Acknowledgements
Inspired: Bisection Method to Find Root of the Equation f(x) = x² - 3.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
| Version | Published | Release Notes | |
|---|---|---|---|
| 1.0.0.0 |
