Optimal Foraging Algorithm
An optimization algorithm, inspired by the animal Behavioral Ecology Theory—Optimal Foraging Theory, named the Optimal Foraging Algorithm (OFA) has been developed. As a new stochastic search algorithm, OFA is used to solve the global optimization problems following the animal foraging behavior. During foraging, animals know how to find the best pitch with abundant prey; in establishing OFA, the basic operator of OFA was constructed following this foraging strategy. During foraging, an individual of the foraging swarms obtained more opportunities to capture prey through recruitment; in OFA the recruitment was adopted to ensure the algorithm has a higher chance to receive the optimal solution. Meanwhile, the precise model of prey choices proposed by Krebs et al. was modified and adopted to establish the optimal solution choosing strategy of OFA.
More detail information can be found in the following reference.
Zhu, Guang-Yu, and Zhang, Wei-Bo. "Optimal foraging algorithm for global optimization." Applied Soft Computing 51 (2017): 294-313.
Cite As
Jack Zhu (2025). Optimal Foraging Algorithm (https://www.mathworks.com/matlabcentral/fileexchange/62593-optimal-foraging-algorithm), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
| Version | Published | Release Notes | |
|---|---|---|---|
| 1.0.0.0 |
