Laplacian Matrix for a Directed Graph
This function returns the directed Laplacian matrix of any graph (DAG).
This is a direct implementation of the paper referred below.
The Graph Laplacian is calculated using the following formula
L = I - (Phi^{1/2} * P * Phi^{-1/2} + Phi^{-1/2} * P^T * Phi^{1/2} ) / 2
where,
I : Identity matrix,
Phi : Matrix with the Perron vector of P in the diagonal and zeros elsewhere, and
P : Transition matrix of the graph. This value depends on the walk
type of the graph exploration.
!! Current implementation includes only a "PageRank" walk type.
!! Future Implementation Plan: "Random Walk"
Referred paper:
Chung, F. (2005). Laplacians and the Cheeger inequality for directed graphs. Annals of Combinatorics, 9(1), 1-19.
Cite As
Syed Hasib Akhter Faruqui (2023). Laplacian Matrix for a Directed Graph (https://www.mathworks.com/matlabcentral/fileexchange/68435-laplacian-matrix-for-a-directed-graph), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.