Fault Detection Using Deep Learning Classification
This demo shows the full deep learning workflow for an example of signal data. We show how to prepare, model, and deploy a deep learning LSTM based classification algorithm to identify the condition or output of a mechanical air compressor.
We show examples on how to perform the following parts of the Deep Learning workflow:
Part1 - Data Preparation
Part2 - Modeling
Part3 - Deployment
This demo is implemented as a MATLAB project and will require you to open the project to run it. The project will manage all paths and shortcuts you need. There is also a significant data copy required the first time you run the project.
Part 1 - Data Preparation
This example shows how to extract the set of acoustic features that will be used as inputs to the LSTM Deep Learning network.
To run:
Open MATLAB project Aircompressorclassification.prj
Open and run Part01_DataPreparation.mlx
Part 2 - Modeling
This example shows how to train LSTM network to classify multiple modes of operation that include healthy and unhealthy signals.
To run:
Open MATLAB project Aircompressorclassification.prj
Open and run Part02_Modeling.mlx
Part 3 - Deployment
This example shows how to generate optimized c++ code ready for deployment.
To run:
Open MATLAB project Aircompressorclassification.prj
Open and run Part03_Deployment.mlx
Cite As
David Willingham (2025). Fault Detection Using Deep Learning Classification (https://github.com/matlab-deep-learning/Fault-Detection-Using-Deep-Learning-Classification), GitHub. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
HelperFiles
Tests
Versions that use the GitHub default branch cannot be downloaded
Version | Published | Release Notes | |
---|---|---|---|
1.0.0 |
|