Conditional GAN (Generative Adversarial Network) with MNIST
[English]
This example shows how to train a conditional generative adversarial network (CGAN) to generate digit images.This demo was created based on the Matlab official document entitled Train Conditional Generative Adversarial Network (CGAN)
https://jp.mathworks.com/help/deeplearning/ug/train-conditional-generative-adversarial-network.html
[Japanese]
このデモでは、Conditional GAN (Generative Adversarial Network)によって手書き数字を生成します。ラベル情報+画像にてネットワークを学習し、さらに画像を生成する際にもラベル情報を付加し、生成する画像のクラスを指定することができます。
Cite As
Kenta (2026). Conditional GAN (Generative Adversarial Network) with MNIST (https://www.mathworks.com/matlabcentral/fileexchange/74921-conditional-gan-generative-adversarial-network-with-mnist), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxTags
Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
