Implementation of Perceptron for Classification
Version 1.0.0 (2.44 KB) by
RFM
Implementing Perceptron in Matlab from Scratch without using the Built-in Functions.
Steps included:-
1. Read Data and Divide into Training and Testing Data
2. Perform Perceptron Training till all training samples are correctly classified
3. Perform Testing using the Final Updated Weights
4. Plot Decision Boundary on scatter plot
5. Check performance through Confusion Matrix
Cite As
RFM (2026). Implementation of Perceptron for Classification (https://www.mathworks.com/matlabcentral/fileexchange/76431-implementation-of-perceptron-for-classification), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Created with
R2018b
Compatible with any release
Platform Compatibility
Windows macOS LinuxTags
Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
| Version | Published | Release Notes | |
|---|---|---|---|
| 1.0.0 |
