Jellyfish Search Optimizer (JS)

Version 1.0.4 (9.99 KB) by nhat truong
A Novel Metaheuristic Optimizer Inspired By Behavior of Jellyfish in Ocean
Updated 28 May 2022

View License

This study develops a novel metaheuristic algorithm that is inspired by the behavior of jellyfish in the ocean and is called artificial Jellyfish Search (JS) optimizer. The simulation of the search behavior of jellyfish involves their following the ocean current, their motions inside a jellyfish swarm (active motions and passive motions), a time control mechanism for switching among these movements, and their convergences into jellyfish bloom. The new algorithm is successfully tested on benchmark functions and optimization problems. Notably, JS has only two control parameters, which are population size and number of iterations. Therefore, JS is very simple to use, and potentially an excellent metaheuristic algorithm for solving optimization problems.

Cite As

Chou, Jui-Sheng, and Dinh-Nhat Truong. “A Novel Metaheuristic Optimizer Inspired by Behavior of Jellyfish in Ocean.” Applied Mathematics and Computation, vol. 389, Elsevier BV, Jan. 2021, p. 125535, doi:10.1016/j.amc.2020.125535.

View more styles
MATLAB Release Compatibility
Created with R2020a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Tags Add Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes

Update descriptions


Update descriptions


Update typos


Update the description.