Skip to content
MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
20:38 Video length is 20:38.
  • Description
  • Related Resources

Developing an Autonomous Cobot with Multimodal Control Using Model-Based Design

Kazuki Ono, KYOCERA Corporation

In recent years, diverse customer needs have led to an increase in the demand of a wide variety of products, services, and solutions. Creating a human-robot coworking environment to satisfy these customer needs requires a flexible robotics system configuration.

Current robotic systems can be inflexible because robots are typically designed to carry out predetermined actions based on specific instructions. To cope with this problem, we are developing a robot that can perform multimodal control by combining the arm, hand, camera, and other sensor information. By comprehensively judging this information, an adaptive dynamic control of the robotics system can be constructed. Thus, flexible robotics movement can be performed in various products, tasks, services, and solutions.

In this session, we will introduce our development of a robot hand which incorporates multiple sensors. The robot hand and its controller were designed and verified using Model-Based Design with MATLAB® and Simulink®. Specifically, Simscape Multibody™ was used to model the motor for the robot hand and simulate the contact force acting between the robot hand and the grasping object. By conjoining the virtual and real control structure of the robot hand, we could seamlessly implement the control system built by Simulink into the hardware. At the end of the session, we will show the modeling of the robot arm and its trajectory planning, the practical example of linking the virtual robot arm controller and robot arm movement in reality, and the integrated simulation of robot arm and hand using Robotics System Toolbox™ and ROS Toolbox. These autonomous coworking robot development processes can lead to the realization of cyber-physical systems (CPS).

Related Products

  • MATLAB
  • Embedded Coder
  • Robotics System Toolbox
  • ROS Toolbox
  • Simscape Multibody
  • Simulink

See all proceedings from MATLAB EXPO 2022
View slides

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Feedback

Featured Product

MATLAB

  • Request Trial
  • Get Pricing

Up Next:

28:13
Various Levels of Simulation for Slybird MAV Using...

Related Videos:

8:32
Building Executable Specifications Using Model-Based Design
23:09
Increasing Energy Efficiency Using Model-Based Design
21:21
Model-Based Approach to Resource-Efficient Object Fusion...
28:04
AVL Embedded Software Model-Based Design Platform Based on...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • MATLAB Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Customer Stories
  • About MathWorks
  • Select a Web Site United States
  • Trust Center
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation