Reinforcement Learning Workflows for AI
Reinforcement learning allows you to solve control problems using deep learning but without using labeled data. Instead, learning occurs through multiple simulations of the system of interest. This simulation data is used to train a policy represented by a deep neural network that would then replace a traditional controller or decision-making system.
In this session, you will learn how to apply reinforcement learning using MATLAB® and Simulink® products, including how to set up environment models, define the policy structure, and scale training through parallel computing to improve performance.
Published: 7 Sep 2020